首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single point diamond face flycutting technique is widely applied to fabricate potassium dihydrogen phosphate (KDP) crystals because of their characteristics of softness, brittleness, deliquescence and anisotropy. This paper studies the feasibility of machining KDP crystals through spiral turning method based on the ductile cutting mechanism of brittle materials. The spiral scratch method is employed to analyze various conditions of achieving brittle–ductile transition in different cutting directions where the critical depth of cut is obtained. The cutting forces and surface formation processes within different cutting parameters are discussed and the parameters ensuring full-aperture ductile turning are acquired. White light interferometer and Atomic Force Microscope (AFM) are used to evaluate the coherence of machined surface qualities in different cutting directions. The results indicate that the critical depth of cut varies from cutting directions significantly and fluctuates from about 200 nm to 1000 nm under the experimental condition. Cutting forces display periodical variation with the change of cutting direction and the periodical trend blurs, even ultimately disappears, with the decrease of the cutting parameters. Root-Mean-Square (RMS) value of the fabricated surface roughness fluctuates from 1.3 nm to 1.7 nm on the whole surface with no distinct anisotropic distribution of the surface morphology according to the results observed by AFM. Compared with face flycutting method, spiral turning method has capability to generate complex surface profiles such as aspheric or freeform surfaces and can also be used to compensate the deformation error of KDP crystals caused by vacuum suction during fabrication.  相似文献   

2.
An inclined end mill machining strategy offers an effective machining method for manufacturing low curvature free-form surfaces. The machined surface profile is a close match to the required surface geometry, and standard end mills are available at competitive prices. The amount of surface finishing work is therefore reduced, and the inclined cutting action prolongs the tool life. Although this machining strategy has these advantages, it is not commonly used in manufacturing industry, because it needs the facilities of costly 5-axis machining centres and appropriate post processors are required to generate the NC codes for these advanced machine tools. This paper proposes a simple method which extends the machining capability of the conventional 3-axis machining centre to give the same specifications as a 5-axis machine, and therefore allow the inclined end mill machining strategy to be used on 3-axis machines. The method involves tilting the workpiece instead of tilting the end mill during the machining process. The tool paths are determined by the workpiece rotation and cutter contact point offset equations. The amount of excess material on the machined surface is minimized by choosing optimum pitching and rolling angles at the work set-up stage. The experimental results indicate that the quality of the machined surfaces is improved in comparison with the surfaces machined by ball-nosed cutters, e.g. the resulting cusp volume is reduced by 64%. The research suggests that the need for advanced and expensive 5-axis machining could be satisfied in a more economical machining environment. As a result, the machining cost of the products may be significantly reduced.  相似文献   

3.
磷酸二氢钾(potassium dihydrogen phosphate,KDP)晶体是公认的性能优良的光学晶体,尤其是大口径(≥ 400 mm)的KDP晶体,是激光核聚变中不可缺少的光学元件之一。KDP晶体从生长到制造成为光学元件,需要经过切割、精密加工、超精密加工及镀膜等多道工序,加工周期长。本研究通过立轴端面磨床对KDP晶体进行磨削加工试验,对比不同粒度的树脂结合剂金刚石砂轮(D7、D36、D91、D151),在不同的加工参数下(主轴转速、工件进给速度、磨削切深),对表面粗糙度Ra、表面微观形貌的影响,研究KDP晶体磨削的可行性,为实现以磨代车(抛),缩短KDP光学晶体元件制造周期奠定基础。   相似文献   

4.
Recently, ultra-precision machining using a single crystal diamond tool has been developing very rapidly, especially in the fields of production processes for optical or magnetic parts such as magnetic discs, laser mirrors, polygon mirrors and copier drums. As a result, it has been successfully extended to machine various soft materials, generating mirror-like surfaces to sub-micron geometric accuracy with the ultra-precision CNC machine and the single crystal diamond tool. With the real cutting operation, the geometric accuracy and the surface finish attainable in machined surfaces are mainly determined by both of the sharpness of a cutting tool and stability of the machine vibration. In this study, for monitoring the progress of machining state for assuring the machining accuracy and the surface quality, a new monitoring method of machining states in face-cutting with diamond tool is proposed, using the frequency response of multi-sensors signal, which includes wear state of tool in terms of the energy within the specific frequency band. A magnetic disc is machined on the ultra-precision lathe.  相似文献   

5.
Potassium dihydrogen phosphate (KDP) crystal presents a host of problems to engineers and opticians. Moreover, because of its anisotropic character, a particular crystal orientation and plane wave transmission are required while the machining process is performed. In this study, by applying the principle of the maximized shearing deformed specific energy and the different shearing elastic modulus along different crystal planes and orientations, a theoretical model to calculate the shear angles when cutting KDP crystal was established. Based on this model, the shear angles’ variation regularity under different cutting conditions was obtained. Additionally, the variation regularities of cutting forces and roughness on different crystal planes were discussed. The results indicate that on different crystal planes the average cutting force and roughness as well as their variation amplitude are different. In addition, the calculated results show that rake angle plays an important role on suppression and minimizing material anisotropic character. Furthermore, the ultra-precision turning and milling experiments were conducted, and the theoretical model matched the experiments well within normal operating conditions.  相似文献   

6.
Micro-end-milling of single-crystal silicon   总被引:1,自引:0,他引:1  
Ductile-regime machining of silicon using micro-end-mill is almost impossible because of the brittle properties of silicon, crystal orientation effects, edge radius of the cutter and the hardness of tool materials. Micro-end-milling can potentially be used to create desired three dimensional (3D) free form surface features using the ductile machining technology for single-crystal silicon. There is still a lack of fundamental understanding of micro-end-milling of single-crystal silicon using diamond-coated tool, specifically basic understanding of material removal mechanism, cutting forces and machined surface integrity in micro-scale machining of silicon. In this paper, further research to understand the chip formation mechanism was conducted. An analysis was performed to discover how the chips are removed during the milling process. Brittle and ductile cutting regimes corresponding to machined surfaces and chips are discussed. Experiments have shown that single-crystal silicon can be ductile machined using micro-end-milling process. Forces generated when micro-end-milling single-crystal silicon are used to determine the performance of the milling process. Experimental results show that the dependence of the cutting force on the uncut chip thickness can be well described by a polynomial function order n. As cutting regime becomes more brittle, the cutting force has more complex function.  相似文献   

7.
Although compound surfaces and polyhedral models are widely used in manufacturing industry, the tool path planning strategies are very limited for such surfaces in five-axis machining and high speed machining. In this paper, a novel conformal map based and planar spiral guided spiral tool path generation method is described for NC machining of complex surfaces. The method uses conformal map to establish a relationship between 3D physical surface and planar circular region. This enables NC operation to be performed as if the surface is plat. Then through inversely mapping a planar spiral defined by a mathematical function into 3D physical space, the spiral cutter contact paths are derived without inheriting any corners on the boundary in the subsequent interior paths. The main advantage of the proposed method is that a smoother, longer and boundary conformed spiral topography tool path is developed. Therefore, the machined surface can be cut continuously with minimum tool retractions during the cutting operations. And it allows both compound surfaces and triangular surfaces can be machined at high speed. Finally, experimental results are given to testify the proposed approach.  相似文献   

8.
Mechanical micro machining processes, like milling and grinding are appropriate technologies for the flexible production of precise molds with complex shapes for metal forming processes. In most cases machining strategies are orientated towards form accuracy of the desired forming tool only. Thus, the generation of tribologically advantageous surfaces is often carried out in subsequent machining steps like honing. In micro scale the subsequent treatment of complex surfaces is very difficult. For that reason it is desirable to create the shape and a suitable surface texture with one tool in one step.This paper is focusing on the comparison of the tribological behavior of polished surfaces with structured surfaces machined by micro milling and micro grinding processes. Micro milling tools and grinding pins with ballend shape are used to create micro structured surfaces. The machining strategy (tool path and line pitch) was varied for both tool types in the same manner. The experiments were carried out on hardened cold working steel using tungsten carbide micro cutters with TiAlN coating and micro grinding pins with an abrasive diamond layer. White light interferometry was used to characterize the machined surfaces and determine the surface parameters. Moreover, a strip drawing test was set up to investigate the tribological behavior of the system consisting of the machined surfaces and thin sheet metals. The results of the strip drawing test suggest a relationship between micro structure and tribological behavior. Finally, the dependencies between machining technology, surface parameters and tribological behavior will be discussed.  相似文献   

9.
The surface finish of machined parts determines the functionality of the product and also the machining requirements for making the parts. On-line monitoring of the surface finish has been an active area of machining research. Conventional contact techniques used for surface-finish measurement are not suitable for in-process measurement as they interfere with the machining operation. In this research, the principle of fractal geometry and image-processing techniques are used to implement a practical area-based surface-finish monitoring system. The fractal dimension estimated from the captured image is used successfully to characterize the machined surface.  相似文献   

10.
目的由于航空结构件壁薄、结构复杂和刚度低等原因,在多轴联动铣削加工过程中,其表面容易出现波纹度等加工纹理缺陷。准确提取、评价铣削表面波纹度,为控制和消除结构件铣削表面波纹度提供可视化参考依据。方法提出了一种频谱分析和小波分析相结合的方法。首先对已加工的航空结构件的铣削表面综合形貌进行频谱分析,依据表面形貌划分依据,确定各表面成分有效信息的频率段范围;再采用Daubechies小波分解原表面形貌特征,把含有不同频率成分的信息分解到互不重叠的频率段上;利用Mallat快速算法,计算出各逼近系数和小波系数,并对有效频率段进行重构,以实现表面形貌特征不同频率成分的提取,进而获取表面波纹度的形貌特征信息。结果针对某型航空结构件的铣削表面,采用文中方法提取到的波纹度形貌特征信息与粗糙度轮廓仪测量的结果基本吻合,验证了该方法的正确性。结论对于提取铣削表面波纹度特征信息,采用频谱分析和小波分析相结合的方法是可行且有效的。  相似文献   

11.
The study of machining errors caused by tool deflection in the balkend milling process involves four issues, namely the chip geometry, the cutting force, the tool deflection and the deflection sensitivity of the surface geometry. In this paper, chip geometry and cutting force are investigated. The study on chip geometry includes the undeformed radial chip thickness, the chip engagement surface and the relationship between feed boundary and feed angle. For cutting force prediction, a rigid force model and a flexible force model are developed. Instantaneous cutting forces of a machining experiment for two 2D sculptured surfaces produced by the ball-end milling process are simulated using these force models and are verified by force measurements. This information is used in Part 2 of this paper, together with a tool deflection model and the deflection sensitivity of the surface geometry, to predict the machining errors of the machined sculptured surfaces.  相似文献   

12.
赵毅学  马学文 《机床与液压》2021,49(14):133-136
通过在数控立式加工中心上加工铰接轴上曲面的案例,介绍利用MasterCAM软件在圆柱和圆锥曲面上实现复杂曲面加工,并说明曲面加工中应该重点关注的问题。  相似文献   

13.
Stringent control on the quality of machined surface and sub-surface during high-speed machining of Inconel 718 is necessary so as to achieve components with greater reliability and longevity. This paper extends the present trend prevailing in the literature on surface integrity analysis of superalloys by performing a comprehensive investigation to analyze the nature of deformation beneath the machined surface and arrive at the thickness of machining affected zone (MAZ). The residual stress analysis, microhardness measurements and degree of work hardening in the machined sub-surfaces were used as criteria to obtain the optimum machining conditions that give machined surfaces with high integrity. It is observed that the highest cutting speed, the lowest feedrate, and the moderate depth of cut coupled with the use of honed cutting edge can ensure induction of compressive residual stresses in the machined surfaces, which in turn were found to be free of smeared areas and adhered chip particles.  相似文献   

14.
In machining processes, a major quality related output is integrity of the machined part surface. In machining of difficult-to-cut materials, a drastic decrease in tool-life makes the machining process even more difficult. By considering the broader perspective of the machining system tailored towards sustainable operations, in this work an alternative—cryogenic machining is evaluated for machining performance. The surface integrity characteristics of machined surface as a function of depth have been analyzed for different combinations of cooling/lubrication machining conditions. The residual stresses on the machined surface and sub-surface, surface hardness, and surface roughness are among the significant characteristics studied in this work. The results show that cryogenic machining processes can be implemented to improve all major surface integrity characteristics, thus improving the final product quality level.  相似文献   

15.
磨损表面形貌分析中的小波变换和分形方法   总被引:3,自引:0,他引:3  
采集机械磨损表面形貌轮廓曲线来分析器械部件的使用状态是检验检测工作的常用方法.文章通过小波变换对所需分析的轮廓曲线进行分解,可以使其复杂结构特征精细化,通过重构可以消除采集和离散等过程中产生的污染"噪声"并且使计算的分形维数更真实可靠;此研究表明,将小波变换方法应用于分形曲线的处理能有效地描述磨损表面的形貌,突出其本质特征,为判定磨损程度和磨损形态提供一条量化的检验检测思路.  相似文献   

16.
Surface quality of advanced superalloys after machining is one of the major issues in the aerospace industry because it directly affects service characteristics of the machined part. Tool life of cemented carbide inserts with the TiAlN coating during machining of direct aged DA 718 alloys under roughing and finishing conditions has been under study. The defect origin on the surface of the machined part was investigated. Metallographic observations of the DA 718 were made using optical metallography and SEM/EDS. To find out the origins of surface defect formation, the morphology of machined parts and cross sections of the machined surfaces have been investigated. Two major categories of defects were detected on the surface of the machined part: cracks and tears. The origin of the cracks on the machined surface is related to shearing of the primary complex TiC/NbC carbide revealed in a structure of DA 718 alloy. At the same time, Nb-rich regions of the primary complex carbide interact with the environment (oxygen from air) during machining with further formation of low strength oxide layer on the surface, forming tears.  相似文献   

17.
 Surfaces generated when machining Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies was investigated. Longer tool life was recorded when machining Ti–6Al–4V with high-pressure coolant supplies and the recorded surface roughness Ra values were well below the tool rejection criterion (1.6 μm) for all cutting conditions investigated. The micro-structure of the machined surfaces were examined on a scanning electron microscope. Micrographs of the machined surfaces show that micro-pits and re-deposited work material were the main damages to the surfaces. Micro-hardness analysis showed hardening of the top machined surfaces when machining with conventional coolant while softening of the subsurface layer was observed when machining under high-pressure coolant supplies. The later is probably due to lower heat generated, with the consequent tempering action when machining with PCD tools with high-pressure coolant supplies. The microstructure below the machined surfaces had minimal or no plastic deformation when machining with conventional and high-pressure coolant supplies.  相似文献   

18.
A study of the impact of machine tool structure on machining processes   总被引:2,自引:1,他引:1  
This paper deals with parallel kinematics machine (PKM) applications for high speed machining. PKM behaviour is anisotropic, so structural deflection due to cutting loads generates different defects in the machined part, according to tool position and orientation in the workspace. The aim of the present study is the definition of a mechanical workspace where the part is machined to a specified quality level. Models of the machine tool structure, the load generated by the cutting phenomena and the machined surface are used to determine this workspace and are applied to a tricept structure with telescopic legs for grooving and drilling operations. A simulation shows that leg deflection gives rise to defects of the machined entity which are evaluated with respect to tool position and orientation. Finally, a mechanical workspace is defined for a drilling process using a tricept structure machine tool.  相似文献   

19.
This paper investigates the slicing of germanium wafers from single crystal, gallium-doped ingots using wire electrical discharge machining. Wafers with a thickness of 350 μm and a diameter of 66 mm were cut using 75 and 100 μm molybdenum wire. Wafer characteristics resulting from the process such as the surface profile and texture are analyzed using a surface profiler and scanning electron microscopy. Detailed experimental investigation of the kerf measurement was performed to demonstrate minimization of material wastage during the slicing process using WEDM in combination with thin wire diameters. A series of timed etches using two different chemical etchants were performed on the machined surfaces to measure the thickness of the recast layer. Cleaning of germanium wafers along with its quality after slicing is demonstrated by using Raman spectroscopy.  相似文献   

20.
Cutting process of glass with inclined ball end mill   总被引:3,自引:0,他引:3  
Cutting processes with ball end mills are discussed for machining microgrooves on glasses. A surface is finished in undeformed chip thickness less than 1 μm at the beginning and at the end of the cut during the cutter rotation. The milling process is applied to glass machining. A crack-free surface can be finished in a large axial depth of cut more than 10 μm. Because glass undergoes almost no elastic deformation, roughness on a cutting edge in glass machining has a larger influence on surface finish than that of metal machining. The rotational axis of the tool is inclined to improve the surface finish. The cutting processes are modeled to show the effect of the tool inclination on the machined surface with considering the edge roughness. The tool inclination compensates for deterioration of the surface finish induced by the edge roughness in the presented model. The improvement of the surface finish is verified in the cutting experiments with the tool inclination. The orthogonal grooves 15–20 μm deep and 150–175 μm wide, then, are machined with the crack-free surfaces to prove efficiency and surface quality in the milling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号