首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the condensation reaction of hydroxylated melamine molecules is possible to take place in the whole pH range, especially in acidic water medium or at high temperature, losing its water solubility. In this work, freeze drying perfectly removes water at pretty low temperature, avoiding condensation reaction of hydroxylated melamine. Therefore, a hydroxylated melamine in solid form (MOH-S) was prepared. It can be not only dissolved in water after storing for 180 days but also well dispersed in waterborne polyurethane emulsion. The addition of hydroxylated melamine significantly improves the tensile strength of polyurethane films by 170%. After soaking the films in water for 24 h, the tensile strength of WPU/30%MOH-S film lost only 6%, but 34% loss for the neat. Fourier transform infrared spectroscopy peak fitting demonstrates that the H-bonding degree of N─H in WPU/30%MOH-S film is 20.72 that is much higher than 3.33 in neat WPU. This indicates that H-bonding cross-linked structure is formed between polyurethane chains and hydroxylated melamine molecules. This work provides an effective strategy for preparing stable hydroxylated melamine and enhancing the strength of polyurethane film.  相似文献   

2.
The effects of five different types of fillers on the thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers were explored to develop a filled polyurethane elastomeric liner for rocket motors with hydroxyl-terminated polybutadiene-based composite propellants. Two type of carbon black, silica, aluminum oxide, and zirconium(III) oxide were used as filler. Based on the improvement in the tensile properties and the erosion resistance achieved in the first part of the study, an ISAF-type carbon black was selected to be used as the main filler in combination with an additional filler. The second part involves the investigation of polyurethane elastomers containing a second filler in various amounts in addition to the ISAF-type carbon black used as the main filler. In addition to the thermal and mechanical properties, the processability of the uncured polyurethane mixtures were also explored by measuring the viscosity in this second part of the study. The studied fillers do not considerbly change the thermal degradation temperatures and the thermal conductivity of the polyurethane elastomers with a filler content up to 16 wt %. The best improvement in the erosion resistance and tensile strength of the polyurethane elastomers with additional fillers is also achieved when filled with the ISAF-type carbon black, whereas the use of zirconium(III) oxide as additional filler provides almost no improvement in these properties. Viscosity of the uncured polyurethane mixtures increases with the increasing filler content and with the decreasing particle size of the filler. Aluminum oxide-filled elastomers seem to be the most suitable compositions having sufficiently high thermal and mechanical properties, together with the processability of uncured mixtures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1057–1065, 1998  相似文献   

3.
A series of hydrogen bonding-rich polyurea/malonamide dendrons have been utilized as building blocks for the synthesis of novel dendritic polyurethane elastomers. Based on the resulting microstructure of soft segments reinforced by the rigid dendritic domains, the hydrogen bonding enforced phase separation of segmented polyurethanes was explored. DSC and FT-IR results indicate that a certain degree of phase separation between dendritic and poly(tetramethylene oxide) (PTMO) domains. The domain size of phase separation are less than 100 nm based on the results obtained from the atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). The analysis of tensile measurements indicates that the incorporation of various contents of different dendrons as the hard segments allows these polymers to exhibit drastically different mechanical properties. Furthermore, low complex viscosity is observed at medium temperatures (above 130 °C) via the rheological analysis. With good mechanical properties at room temperature and low melt viscosity at medium temperatures, these thermoplastic elastomeric polyurethanes are suitable for applying in hot-melt process.  相似文献   

4.
Novel polyurethane elastomers have been developed to incorporate plant oil into their matrix. Bisphenol A glycerolate diacrylate was used as a chain extender for the polyurethane prepolymer obtained from poly(tetramethylene oxide) glycol and 1,6‐hexane diisocyanate. The curing of the polyurethane acrylate matrix in the presence of the plant oil results in a network matrix which includes renewable resources in their structure. The effects of the inclusion of different vegetable oil (such as soybean oil, rapeseed oil, cotton oil, or sunflower oil) into the crosslinked polyurethane acrylates matrix were studied by evaluating various properties of the films such as the thermal behavior, the tensile properties, and the surface properties. The increases in chain extender content determine an increase of the thermal stability (the 10% weight loss decomposition temperatures increase from 325 to 375°C) and mechanical strength (from 3 to 9 MPa). Contact angle measurements have shown that the hydrophobic property of the films surface slightly increased with the incorporation of plant oil into the crosslinked polyurethane matrix. In addition, polyurethane/plant oil blends exhibit enhanced mechanical strength (from 3 to 9.8 MPa), as well as an increased roughness reaching a maximum average (113 nm) in the case of cotton oil. All polyurethane/plant oil blend present higher values for glass transition temperature and slightly enhanced values for thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Aqueous polyurethane dispersions based on isophorone diisocyanate (IPDI), poly (tetramethylene adipate) glycol (PTAd), and dimethylolproprionic acid (DMPA) were synthesized by a prepolymer mixing process. Effects of the molecular weight of PTAd and types of hybridizations, viz. blending, semi-interpenetrating polymer network (IPN), and full IPNs with polybutylacrylate have been determined. It was found that thermal, mechanical, and adhesion properties of the polyurethane dispersions increased with increasing molecular weight of polyols.

Regarding the effects of hybridization, full IPNs gave the greatest tensile strength and elongation at break with a fast drying rate, whereas semi-IPNs gave the greatest initial as well as final adhesion, implying that a certain degree of chain mobility would augment the penetrations of adhesive molecules into the soft polyurethane foam substrates.  相似文献   

6.
To improve the miscibility and tensile strength of the ABCPs material, we conducted a study in which maleimide end-capped polyurethane was prepared from the PU prepolymer and maleimide by reacting 4,4′-diphenylmethane diisocyanate (MDI) with poly(tetramethylene oxide) (PTMO), whose molecular weights were Mn=600∼700 (PA650), Mn=900∼1050 (PA1000) and Mn=1900∼2100 (PA2000). AB crosslinked polymers (ABCPs), synthesized from the PU prepolymer and the novolac resin, were studied. The study confirmed the occurrence of phase mixing. Further investigation through dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) revealed that the tensile strength and phase mixing were,improved.  相似文献   

7.
α-ω hydroxy-terminated oligo-dienes, both butadiene and isoprene, hydrogenated at different ratios, were polymerized with diphenylmethane diisocyanate and 1,4-butanediol. Dynamic and static mechanical studies were made on the segmented polyurethanes. Those synthesized from oligo (1,4-butadiene) show the decrease of damping peak and a second relaxation due to semi-cristalline structure of soft blocks after their hydrogenation. On the other hand, the hydrogenation of oligo (1,2-butadiene) renders polyurethanes with better elastomeric properties, that is, the relaxation of soft blocks at lower temperature, and the good mechanical and thermal properties at higher temperatures. This can be explained by the modification attributed to the better block segregation between the hydrogenated soft blocks and the urethane hard blocks.  相似文献   

8.
Two semiinterpenetrating polymer networks (semi‐IPNs) based on trihydroxyl methylpropane–polyurethane (T‐PU) or castor oil–polyurethane (C‐PU) were prepared by curing the mixed solution of the polyurethane prepolymer and nitrochitosan (NCH). During the curing process, crosslinking and grafting reaction between the molecules of the PU prepolymer and NCH occurred, because of the high reactivity of remaining hydroxyl groups in the NCH with ? NCO groups of PU. The structure of the original semi‐IPN sheets and the sheets treated with acetone were studied by infrared, 13C‐NMR, scanning electron microscopy, and dynamic mechanical analysis, showing interpenetration of NCH molecules into the PU networks. When nitrochitosan content (CNCH) was lower than 10 wt %, the semi‐IPN sheets T‐PU and C‐PU had higher density and tensile strength (σb) than the systems with CNCH more than 20%. The trihydroxymethyl propane‐based PU reacted more readily with nitrochitosan to form the semi‐IPNs than castor oil‐based PU. The semi‐IPN coatings T‐PU and C‐PU were used to coat cellophane, resulting in intimate interfacial bonding. The mechanical strength and water resistivity of the cellophane coated with T‐PU coating were improved remarkably. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3109–3117, 2001  相似文献   

9.
Waterborne polyurethane (WBPU) adhesives were prepared using poly(tetramethylene oxide glycol), 4,4’-dicyclohexylmethane diisocyanate (H12MDI), hydrophilic agent dimethylol propionic acid and chain extender of 2,2,3,3-tetrafluoro-1,4-butanediol (TFBD), ethylene diamine (EDA), and 1,4-butanediol. All three chain extenders have been used as single and mixed (different ratio) content during synthesis, and the effect of chain extender and their content to the properties of tensile strength, Young’s modulus, water swelling (%), and adhesive strength was investigated. The adhesive strength value was higher using EDA as a single-chain extender; however, the potentiality of adhesive strength under water was improved using mixed-chain extenders of EDA and TFBD in WBPU adhesives. The maxima potentiality was observed with 6.31 mole% TFBD and 2.10 mole% EDA in WBPU adhesives.  相似文献   

10.
Castor oil containing hydroxyl functionality was reacted with 4,4′-diphenylmethanediisocyanate under different stoichiometric ratios of NCO/OH to obtain liquid polyurethanes. These polyurethanes were subsequently interpenetrated with methyl acrylate monomer using ethylene glycol dimethacrylate as a crosslinker by radical polymerization using benzoyl peroxide as an activator. The polyurethane/poly(methyl acrylate) interpenetrating polymer networks (PU/PMA IPNs) were obtained as tough films by transfer molding techniques. All IPNs were characterized by their resistance to chemical reagents, optical properties, thermal behavior, and mechanical properties: tensile strength, Young's modulus, elongation at break (%) and hardness Shore A. The morphology of the IPNs was studied by scanning electron microscopy and dielectric properties: electrical conductivity (σ), dielectric constant (?′), dielectric loss (?″), and loss tangent (tan δ) at different temperatures.  相似文献   

11.
Abstract

Condensation polyurethanes with different hard segment (HS) content were prepared by condensation reaction of urea, phenol sulphonic acid and formaldehyde and tested for their mechanical, physical and thermal properties. Obtained polyurethane (PUR) films were first heated at 50°C for 120 min and then treated at 135°C for 15 min or 160°C for 10 min. The tensile strength of samples thermally treated at 50°C then at 135°C was 120% higher than for samples treated only at 50°C. The obtained polyurethanes exhibited segmented structures with phase separation between HSs and soft segments (SSs). Films containing 19 and 21%HSs heated at 50°C then 135°C exhibited acceptable mechanical properties and water resistance. The lower and higher end use temperatures of PUR films were affected mainly by the polymer composition. Moreover, the polyurethane samples containing 19 and 21%HSs have shown the highest decomposition temperature (i.e. >165°C), compared to 80°C for polymers with 32%HSs.  相似文献   

12.
Polyurethanes were prepared via a nonisocyanate route, by reacting carbonated soybean oil (CSBO) with aromatic and cycloaliphatic diamines. Nonisocyanate polyurethanes prepared form CSBO and aliphatic diamines have relatively low tensile strength and one of the possible ways to increase strength and rigidity is to use diamines with rigid aromatic or cyclic structure. The effect of amine structure and amine to carbonate ratio on polyurethane structure and mechanical, physical, and swelling properties was studied. m‐xylylene diamine (m‐XDA), p‐xylylene diamine (p‐XDA), and isophorone diamine were used as the reactants, with amine to carbonate ratios of 0.5 : 1, 1 : 1, and 1 : 2. All amines produced elastomeric polyurethanes with glass transitions between ?6° C and 26°C, as measured by differential scanning calorimeter (DSC). Tg was primarily controlled by the amine‐to‐cyclic carbonate ratio, and to a lesser extent by the amine structure. The highest tensile strength was obtained for p‐XDA and the lowest for m‐XDA as a result of differences in hydrogen bonding. Tensile strength and hardness were higher than in aliphatic diamine‐based polyurethanes. Swelling in toluene and water depended on the polarity of polyurethane networks that was dominantly controlled by the amine‐to‐cyclic carbonate ratio. Swelling in toluene was higher at the lower amine to carbonate ratio due to lower polarity of the polyurethane matrix. Swelling in water behaved quite the opposite, the degree of swelling for the more polar polyurethane matrix was higher. Reaction temperatures of 70–100°C were high enough to promote ester group cleavage and along with urethanes, amide formation was always present. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Nanocomposites consisting of thermoplastic polyurethane–urea (TPU) and silica nanoparticles of various size and filler loadings were prepared by solution blending and extensively characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermal analysis, tensile tests, and nanoindentation. TPU copolymer was based on a cycloaliphatic diisocyanate and poly(tetramethylene oxide) (PTMO-2000) soft segments and had urea hard segment content of 20% by weight. TPU/silica nanocomposites using silica particles of different size (29, 74 and 215 nm) and at different loadings (1, 5, 10, 20 and 40 wt. %) were prepared and characterized. Solution blending using isopropyl alcohol resulted in even distribution of silica nanoparticles in the polyurethane–urea matrix. FTIR spectroscopy indicated strong interactions between silica particles and polyether segments. Incorporation of silica nanoparticles of smaller size led to higher modulus and tensile strength of the nanocomposites, and elastomeric properties were retained. Increased filler content of up to about 20 wt. % resulted in materials with higher elastic moduli and tensile strength while the glass transition temperature remained the same. The fracture toughness increased relative to neat TPU regardless of the silica particle size. Improvements in tensile properties of the nanocomposites, particularly at intermediate silica loading levels and smaller particle size, are attributed to the interactions between the surface of silica nanoparticles and ether linkages of the polyether segments of the copolymers.  相似文献   

14.
The interpenetrating polymer networks (IPNs) of polyurethane (PU) and the mixture of bismaleimide (BMI) and the 2-hydroxylethyl methacrylate (HEMA)-terminated PU prepolymer (HPU) were prepared by using a simultaneous polymerization technique. The effects of the PU molecular weight and the amounts of the PU on the mechanical properties, thermal stability, and dynamic mechanical properties are discussed. The IPNs exhibited superior ultimate tensile strength as the polyol of PU and HPU in the IPNs is based on poly(tetramethylene oxide) (PTMO) glycol of molecular weight 1000 (PTMO1000). Izod impact property of the IPNs indicated that the PU(PTMO1000)/BMI-HPU(PTMO1000) IPNs had much more significant improvement than that of the PU(PTM02000)/BMI-HPU(PTMO2000) IPNs. Better thermal stability was shown by the IPNs as compared with the components of the networks, i.e. PU or BMI-HPU copolymers. The dynamic mechanical analysis (DMA) indicates that these IPNs show various shifts in the loss moduli(E) at the high and low temperature transition peaks for various molecular weight of the polyol employed in the PU. Better compatibility between BMI and PU was found as the PU(PTMO1000) was employed.To whom all correspondence should be addressed.  相似文献   

15.
A series of crosslinked polyurethane‐block‐poly(trifluoropropylmethyl)siloxane elastomers were prepared via two steps. First, poly(trifluoropropylmethyl)siloxane polyurethane (FSPU) prepolymers were synthesized with α,ω‐bis(3‐aminopropyldiethoxylsilane) poly(trifluoropropylmethyl)siloxane (APFS) and toluenediisocyanate (TDI) and then capped with butanediol to generate the macromolecular FSPU diol extender. Second, polyurethane prepolymers synthesized from poly(tetramethylene oxide) and TDI were reacted with FSPU diol extenders with different ratios. The copolymers formed films through moisture curing and were characterized by Fourier transform infrared spectroscopy, DSC, dynamic mechanical analysis, TGA, mechanical testing etc. It is found that the equivalent ratio of reactants gives rise to a high molecular weight of copolymers and that low molecular weight APFS in the copolymers can form a certain number of silicon–oxygen crosslinks resulting from silicon alkoxy to produce higher tensile strength elastomers. The material thus has higher thermal stability and a more stable surface performance. The copolymers are then good candidates for biomedical applications.© 2013 Society of Chemical Industry  相似文献   

16.
High-performance casting polyurethane elastomers (CPUe) were successfully synthesized by the reaction of polyurethane prepolymer (PUP) blocked by methyl ethyl ketone oxime (MEKO) with diamine chain extenders. The effects of blocking agent were systematically studied on the structures, thermal stabilities, mechanical properties, and processability of polyurethane. The addition of MEKO significantly improved the tensile strength and toughness. The maximum tensile strength was 35.6 MPa, and the maximum elongation at break was 1065%. The high strength and toughness were attributed to the fact that under mild reaction conditions, the reaction tended to extend the molecular chains, which indicated that the formation of long chains was conducive to the extension and self-reinforcement of chain segments. Crystallization and strong hydrogen bonds between molecules also led to low loss factor. This deblocking polymerization strategy solves the gel problem in the polymerization process, and provides a new idea for the preparation of CPU.  相似文献   

17.
The engineering properties of polyurethane–poly(methyl methacrylate) simultaneous interpenetrating networks (SIN's) were evaluated. The hardness behavior reflected the observed phase inversion in the electron-microscopic studies. The maximum ultimate tensile strength was observed at 85% polyurethane–15% poly(methyl methacrylate) IPN and was due to the filler-reinforcing effect of the rigid poly(methyl methacrylate) phase. The ultimate tensile strenght of the 75/25 polyurethane–poly(methyl methacrylate) IPN was higher than that of the corresponding pseudo-IPN's (only one network crosslinked) and the linear blend. The leathery and glassy compositions did not show any reinforcement in the ultimate tensile strength. This indicated that the reinforcement in the ultimate tensile strength was not directly related to interpenetration (by increased physical entanglement crosslinks), but indirectly related by reducing the rigid phase domain sizes and increasing the adhesion between the two phases, thus enhancing the filler-reinforcing effect similar to that observed in a carbon black-filled rubber. The tear strengths of the polyurethane-rich IPN's pseudo-IPN's, and linear blends were found to be higher than that of the pure polyurethane as a combined result of increased modulus and tensile strength. The weight retentions in the thermal decomposition of the IPN's, pseudo-IPN's, and linear blends were higher than the proportional average of the component networks. The results seemed to indicate that this enhancement was related to the presence of the unzipped methyl methacrylate monomer. It was suggested that the monomers acted as radical scavengers in the polyurethane degradation, thus delaying the further reaction of the polyurethane radicals into volatile amines, isocyanates, alcohols, olefins, and carbon dioxide.  相似文献   

18.
Two-component interpenetrating polymer networks (IPN) of the SIN type (simultaneous interpenetrating networks) were prepared from three different polyurethanes and two epoxies. The linear prepolymers were combined in solution, together with crosslinking agents and catalysts, films cast, and subsequently chain extended and crosslinked in situ. Two of the IPN's showed significant improvement in thermal resistance, as measured by thermogravimetric analysis (TGA). All of the IPN's showed maxima in tensile strength significantly higher than the tensile strengths of the component networks at 25% polyurethane and minima at 75% polyurethane. The minima were explained by an initial dilution of the strong polyurethane hydrogen bonds by the epoxies, and the maxima, by an increase in crosslink density due to interpenetration.  相似文献   

19.
Water-borne polyurethane (WPU) primers were synthesized from three types of polyol, viz., poly(propylene glycol), poly(tetramethylene glycol), and polycaprolactone diol (PCL) at two prepolymer molecular weights, and were tested for the adhesion between vinyltrimethoxysilane modified aluminum panel and polycarbonate. It was found that chemical hybridizations of Al panel with WPU via sol–gel reaction were crucial to enhance the adhesion. Among three types of polyol, PCL gave the highest adhesion strength, glassy and rubbery moduli, tensile strength, and glass transition temperature. On the other hand, smaller prepolymer molecular weight gave improved adhesion and improved mechanical properties due to the increased crosslink density and cohesive strength.  相似文献   

20.
Polyurethanes by a nonisocyanate route were prepared by reacting carbonated soybean oil with different diamines. The effect of amine structure and carbonate to amine ratio on polyurethane structure and mechanical, physical, and swelling properties was studied. The reactants 1,2-ethylenediamine, 1,4-butylenediamine, and 1,6-hexamethylenediamine were used with the carbonate to amine ratio of 1 : 0.5, 1 : 1, and 1 : 2. It was found that along with urethane formation, the amine group reacted with ester groups to form amides. All amines produced elastomeric polyurethanes with glass transitions between 0 and 40°C and hardness between 40 and 90 Shore A. The reaction of epoxidized soybean oil with carbon dioxide was optimized resulting in complete conversion of epoxy to cyclic carbonate groups ending in polyurethanes with higher crosslinking density and much higher tensile strength than previously reported for similar polyurethanes. Swelling in toluene and water depended on crosslinking density and the polarity of polyurethane networks controlled by the cyclic carbonate-to-amine-ratio. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号