首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
结合纳米材料与电化学传感器的优点制备了Nafion/GSH-Fe3O4/炭气凝胶/GC传感器用于丙烯酰胺(AA)的检测,通过对影响传感器响应条件以及GSH与AA反应条件的优化发现:固载方式为Nafion/GSH-Fe3O4/炭气凝胶/GC,炭气凝胶修饰量为4μL时传感器响应效果最好,当温度为35℃时对AA的检测最好,在最优条件下对一系列不同浓度的AA进行检测发现,在10-8~5×10-7mol/L与10-10~10-8 mol/L范围内ΔIp与AA浓度呈现良好的线性关系,线性方程分别为:Y1=-0.299X+2.699;Y2=-15.272 76X+167.679 91,检出限为8.87×10-11 mol/L。  相似文献   

2.
制备了三维花状氧化铜纳米材料及氧化铜(CuO)/还原氧化石墨烯(rGO)纳米复合材料,并利用SEM、TEM、XRD、Raman和XPS对合成的纳米材料进行了表征.将所制备的纳米材料应用于修饰电极构建扑热息痛生物传感器,实验结果显示:相比于氧化铜和还原氧化石墨烯的单一材料,纳米复合材料修饰的电极对检测扑热息痛具有较强的氧化还原能力,并且在浓度3.00~500 μmol/L范围内呈良好的线性关系,检出限为0.19 μmol/L(S/N=3).此外,该生物传感器用于测定实际样品的结果令人满意.  相似文献   

3.
在含牛磺酸的磷酸盐缓冲溶液中,用循环伏安法在玻碳电极上制备聚牛磺酸薄膜.采用循环伏安法研究多巴胺(DA)和抗坏血酸(AA)在聚牛磺酸膜修饰电极上的电化学行为.实验结果表明聚牛磺酸膜修饰电极对DA的氧化具有良好的电催化作用和选择性,DA与AA氧化峰电位差达220 mV,对DA的电流响应灵敏度高出AA近十倍.在5×10-6~ 1×10-4 mol/L范围内,DA的浓度与峰电流呈良好的线性关系,相关系数为0.998 3,检测限为1.0×10-6 mol/L.该修饰电极能在AA共存时选择测定DA.  相似文献   

4.
羟基磷灰石纳米线具有比表面积大、吸附性强,生物相容性好的优点,利用石墨烯优异的导电性与羟基磷灰石复合制成纳米复合材料,该复合材料在电化学领域得到了越来越广泛的应用。利用水热法一步制备出羟基磷灰石纳米线/还原氧化石墨烯/纳米金复合材料,并用该复合材料修饰的玻碳电极作为工作电极制造出抗坏血酸氧化酶传感器,该传感器对抗坏血酸的电化学性能结果表明:纳米复合材料修饰的工作电极对抗坏血酸有优异的电化学活性,峰值电流与抗坏血酸浓度呈现良好的线性关系;抗坏血酸氧化酶传感器灵敏度为1.5949×10-2 A/moL,线性检测范围为3.90×10-4~3.60×10-2 mol/L(R2=0.99845),最低检测限为3.39×10-6 mol/L(S/N=3)。实验结果表明该抗坏血酸氧化酶传感器具有灵敏度好,线性检测范围宽,最低检测限小的优点,在对抗坏血酸检测领域具有广泛的应用前景。  相似文献   

5.
制备了一种基于电还原石墨烯(ERGO)、金纳米粒子(Au NPs)修饰玻碳电极的电化学DNA传感器,应用于大肠杆菌O157:H7的快速、灵敏检测.首先将滴加在玻碳电极表面的氧化石墨烯进行电还原,然后通过电沉积方法将金纳米粒子均匀平铺在电极表面.利用金纳米粒子和氨基之间的共价键作用将端氨基修饰的探针DNA固定在电极表面,完成电化学DNA传感器的制备,并对目标DNA进行了定性与定量检测.实验结果表明:所制备的传感器具有良好的选择性、准确性,并且操作简单易行,对目标DNA的检测限为7.735×10~(-13)mol/L,检测范围为1×10~(-12)~1×10~(-8) mol/L.  相似文献   

6.
将乙酰胆碱酯酶(AChE)固定到石墨烯-氧化锌(GR-ZnO)纳米复合物修饰的玻碳电极表面,构建了一种用于辛硫磷检测的高灵敏电化学生物传感器.纳米复合物不仅为保持AChE的生物活性提供了适宜的微环境,并且对辛硫磷的传感性能的改善显示出强大的协同效应.抑制率与辛硫磷浓度的对数值在1.0×10-11mol/L到1.0×10-6mol/L范围内呈良好的线性关系,检测限为3.4×10-12 mol/L(S/N=3).  相似文献   

7.
在含茜素红的磷酸盐缓冲溶液中,用循环伏安法在制备好的碳纳米管修饰电极上电聚合茜素红膜,得到聚茜素红/碳纳米管复合修饰电极,并对复合修饰电极进行了电化学表征.研究了复合膜修饰电极对双酚A电催化作用的最佳条件.结果表明:双酚A的浓度在5.0×10-7~1.0×10-5mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-8mol/L.该复合修饰电极可作为电化学传感器用于双酚A的含量测定及环境水体中实际样品的分析.  相似文献   

8.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10-6~1.0×10-4 mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-7 mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

9.
分别采用高温煅烧法和水热合成法制备g-C_3N_4材料和g-C_3N_4-CeO_2复合材料.采用傅里叶红外光谱仪(FTIR),X-射线衍射(XRD)和扫描电镜(SEM)对材料进行表征.将g-C_3N_4-CeO_2和辣根过氧化物酶(HRP)混合修饰于玻碳电极表面后,再进行电化学聚合氯金酸,构建一种新型的用于检测过氧化氢(H_2O_2)的电化学Au/g-C_3N_4-CeO_2-HRP/GCE生物传感器.实验结果表明:该传感器对H_2O_2有较好的催化响应,在H_2O_2浓度1. 0×10-5~4. 6×10-3mol/L的范围内该传感器的响应电流与浓度呈现良好的线性关系,检出限为2. 6μmol/L(S/N=3).该传感器还应用于对实际水样的检测,其加标回收率为98. 4%~101. 2%.因此,g-C_3N_4-CeO_2复合材料在电化学传感器方面有着潜在的应用前景.  相似文献   

10.
采用溶胶凝胶法制备了二茂铁微粒后,将所得二茂铁微粒超声分散于甲基三甲氧基硅烷形成的溶胶结构中,得到了溶胶凝胶固载的二茂铁纳米粒子,并制成化学修饰碳糊电极.采用扫描电镜(SEM)方法对制得粉体微粒进行表征,并通过循环伏安实验与计时安培实验测试修饰电极的电催化活性.结果表明:采用溶胶凝胶法分散的二茂铁纳米粒子,粒径约为300nm,将二茂铁固载于SiO2的凝胶结构中有效地提高了修饰电极的稳定性与二茂铁的分散性.在优化的实验条件下,修饰电极对抗坏血酸(AA)的氧化具有明显的催化作用,安培法检测AA的线性范围为3.0×10-6~2.5×10-3 mol/L,检出限为1.0×10-6 mol/L(3sb,n=10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号