首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this work, commercially available white paint is applied as a pigmented diffuse reflector (PDR) on the rear surface of thin-film crystalline silicon (c-Si) solar cells with a silicon thickness in the 1–2 μm range. We show that white paint increases the short-circuit current density of the solar cells enormously, with a boost of 41% observed for very thin planar solar cells illuminated with the global AM1.5 solar spectrum. We also show that white paint is a better back surface reflector (BSR) than aluminium, air, a transparent conductive oxide (TCO)/aluminium stack, and even a detached aluminium mirror. While previous studies have investigated the influence of PDRs on silicon solar cells with thicknesses of over 27 μm, this work closes the gap that has existed for much thinner cells.  相似文献   

2.
Microspherical solar cells and modules have been fabricated. The spherical nature of these semi-transparent devices allows the microspherical cells to harvest both directly incident and diffuse components of sunlight thereby improving the solar energy conversion efficiency. Indoor and outdoor characterizations of these three dimensional semi-transparent cells and modules are carried out using a Lambertian reflector in order to assess the maximum efficiency of the devices. In the absence of the reflector the cell efficiency is 13.5% under standard illumination (100 mW cm−2, A.M. 1.5, 25 °C). However, this is significantly enhanced in the presence of the reflector. Microspherical modules with the reflector are directly compared to similar semi-transparent modules comprised of traditional planar devices, in outdoor tests at low light intensity (2.5–25 mW cm−2) to further demonstrate the benefits of the design particularly at low angle of incident radiation.  相似文献   

3.
We have investigated a pin-type protocrystalline silicon (pc-Si:H) multilayer solar cell fabricated by employing a silicon–carbide double p-layer structure and a layered structure of multilayer processing through alternate H2 dilution. The initial conversion efficiency is drastically improved by incorporating a hydrogen-diluted boron-doped amorphous silicon–carbide (p–a-SiC:H) buffer layer at the p/i interface. Remarkably, the pc-Si:H multilayer absorber exhibits superior light-induced metastability to a conventional amorphous silicon (a-Si:H) absorber. Therefore, we have successfully achieved a highly stabilized efficiency of 9.0% without using any back reflector.  相似文献   

4.
The characterization of silicon spheres 1 mm in diameter, which were produced by a dropping method and solar cell performance using spheres are reported. Scanning electron microscopy observations of the Si spheres after Dash etching and X-ray pole figures indicate that the spherical Si has many defects and crystal grains. Systematic study of the crystal growth temperature and the atmosphere in the dropping area yields improvements in the crystallinity as well as a decrease in the concentrations of oxygen and carbon. Moreover, the spherical Si solar cell performance improved because these impurities are the prime factor for recombination centers.  相似文献   

5.
The estimate for the lowest cost of SODL (silicon on defect layer) solar cell is made according to the price standard of present market. The estimate shows that the PV (photovoltaics) energy costs can be reduced from today's 25–30 cents/(kW h) to 7–8 cents/(kW h) which is comparable with the present cost of electricity generated by traditional energy sources such as fossil and petroleum fuels. The PV energy costs could be reduced to a value lower than 7–8 cents/(kW h) by developing SODL technology. The SODL solar cell manufacture featuring simple processes is suitable to large scale automated assembly lines with high yield of large area cells. Some new ideas are suggested, favoring the further reduction in the cost of commercial solar cells.  相似文献   

6.
Crystalline silicon solar cells show promise for further improvement of cell efficiency and cost reduction by developing process technologies for large-area, thin and high-efficiency cells and manufacturing technologies for cells and modules with high yield and high productivity.In this paper, Japanese activities on crystalline Si wafers and solar cells are presented. Based on our research results from crystalline Si materials and solar cells, key issues for further development of crystalline Si materials and solar cells will be discussed together with recent progress in the field. According to the Japanese PV2030 road map, by the year 2030 we will have to realize efficiencies of 22% for module and 25% for cell technologies into industrial mass production, to reduce the wafer thickness to 50–100 μm, and to reduce electricity cost from 50 Japanese Yen/kWh to 7 Yen/kWh in order to increase the market size by another 100–1000 times.  相似文献   

7.
ZnO thin films as an antireflective (AR) coating have been successfully fabricated on spherical Si solar cells by chemical deposition, which enables uniform film formation. ZnO films were prepared chemically by immersing the cell in an aqueous solution of zinc nitrate and dimethylamineborane maintained at 80 °C. The current–voltage measurements of the solar cells confirmed the increase in short circuit current induced by the AR effect. The open circuit voltage and fill factor were improved by surface passivation. As a result, the conversion efficiency of cells without an AR coating (9.45%) increased to 11.8%, which represents a 25% (relative) increase. The results indicate that the chemical deposition of ZnO is effective for the AR coating of spherical Si solar cells.  相似文献   

8.
Bow in screen-printed back-contact industrial silicon solar cells   总被引:1,自引:0,他引:1  
In this paper, we present a model of the bow in thin back-contact silicon solar cells with screen-printed (SP) silver grid metallization. A modification of the bimetallic strip model is used to model the bow for the interdigitated back-contact, emitter-wrap-through (EWT) solar cell. It is proposed that the contact area fraction of the thick regions (>100 nm)of the binder glass at the Ag–Si contact interface responsible for metallization adhesion is an important parameter necessary for modeling the bow for SP back-contact solar cells with better accuracy. Techniques for reducing the bow are also proposed.  相似文献   

9.
Tandem solar cells represent an elegant way of overcoming the efficiency limits of single-junction solar cells and reducing the light-induced degradation of amorphous silicon films. Stacked structures consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell allow a good utilization of the solar spectrum due to the band gap values of the two materials. These devices, firstly introduced by the IMT research group, were designated as “micromorph” tandem solar cells. To better exploit this concept, it is important to tune parameters like the band gaps and the short-circuit currents.In this work, we have realized micromorph tandem solar cells on Asahi U-type TCO-covered glass substrates. The intrinsic layer of both the amorphous top cell and the microcrystalline bottom cell is grown by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at 100 MHz at low substrate temperature (150 °C). Finally, a ZnO reflector and a metal contact complete the structure. No intermediate optical mirror between the two cells is used at this stage. Undiluted a-Si:H, with reduced band gap when compared to H2-diluted amorphous silicon, is used as absorber layer in the top cell. As for the bottom cell, the high-pressure–high-power regime (up to 267 Pa–80 W) has been explored aiming at growing high-quality microcrystalline silicon at large deposition rates. The effect of the structural composition of the microcrystalline absorber layer on the current–voltage characteristic and spectral response of tandem devices has been investigated. An efficiency of 11.3% has been obtained with short-circuit current densities around 13 mA/cm2, open-circuit voltages 1.34 V and fill factors 66%.  相似文献   

10.
Development of doped silicon oxide based microcrystalline material as a potential candidate for cost-effective and reliable back reflector layer (BRL) for single junction solar cells is discussed in this article. Phosphorus doped μc-SiOx:H layers with a refractive index ∼2 and with suitable electrical properties were fabricated by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique, using the conventional capacitively coupled reactors. Optoelectronic properties of these layers were controlled by varying the oxygen content within the film. The performance of these layers as BRL have been investigated by incorporating them in a single junction amorphous silicon solar cell and compared with the conventional ZnO:Al based reflector layer. Single junction thin film a-Si solar cells with efficiency ∼9.12% have been successfully demonstrated by using doped SiO:H based material as a back reflector. It is found that the oxide based back reflector shows analogous performance to that of conventional ZnO:Al BRL layer. The main advantage with this technology is that, it can avoid the ex-situ deposition of ZnO:Al, by using doped μc-SiO:H based material grown in the same reactor and with the same process gases as used for thin-film silicon solar cells.  相似文献   

11.
Hydrogenated amorphous silicon solar cells have been realised in both a p–i–n configuration on a Corning glass substrate as well as in a n–i–p configuration on stainless-steel substrate. The performance degradation of the two kinds of cell under solar illumination has been examined for a 140 h period. During degradation, the two devices were kept under load in the maximum power condition that is normally used in a solar plant. The performance of the Corning glass deposited device exhibited a higher rate of degradation with respect to the other cell. A discussion on the possible reasons for this behaviour is given.  相似文献   

12.
The paper presents the latest results of the polycrystalline wafer engineering result (POWER) silicon solar cell research (G. Willeke, P. Fath, The POWER silicon solar cell, Proceedings of the 12th EPVSEC, Amsterdam, 1994, pp. 766–768). Mono – as well as bifacially active semitransparent silicon solar cells have been created by forming perpendicularly overlapping grooves on the front and the rear side of a silicon wafer resulting in a regular pattern of holes. The developed very simple manufacturing process is fully compatible with an industrial production and uses POCl3-tube diffusion, PECVD silicon nitride as single ARC and screen-printing metallization. Maximum efficiencies of η=11.2% for monofacial POWER cells on 0.4 Ω cm Cz material with a transparency of 18.2% and η=12.9% for bifacial cells on 1 Ω cm Cz material with a transparency of 16% have been obtained. Results for multicrystalline (mc) semitransparent mono- and bifacially active silicon solar cells are also presented.  相似文献   

13.
A new technique for producing thin single-crystal silicon solar cells has been developed. The new technology allows for large decreases in silicon usage by a factor of 12 (including kerf losses) compared to conventional crystalline silicon wafer technologies. The new Sliver® cell process uses a micromachining technique to form 60 μm-thick solar cells, fully processed while they are still supported by the silicon substrate at the edge of the wafer. The Sliver® solar cells are capable of excellent performance due to their thickness and unique cell design with demonstrated efficiencies over 19.3% and open-circuit voltages of 683 mV. In addition, the cells are bifacial (accepts light from either sides) and very flexible. Several prototype modules have been fabricated using a new design approach that introduces a diffuse reflector to the rear of a bi-glass module. To save expensive silicon material, a significant gap is kept between cells. The light striking between cells is scattered from the rear reflector and is directed onto the rear surface of the bifacial Sliver® cells. Module efficiency of 13% (AM1.5, 25C) has been demonstrated with a module presenting a 50% solar-cell coverage fraction, and 18.3% with a 100% Sliver® cell coverage fraction.  相似文献   

14.
Heterojunction solar cells have been manufactured by depositing n-type a-Si: H on p-type 1–2Ω cm CZ single crystalline silicon substrates. Although our cell structure is very simple - neither a BSF nor a surface texturing is used - a conversion efficiency of 13.1% has been achieved on an area of 1 cm2. In this paper the technology is described and the dependence of the solar cell parameters on the properties of the n-type a-Si: H layer is discussed. It is shown that this cell type exhibits no degradation under light exposure.  相似文献   

15.
In this paper the first experimental evidence of the high Voc-potential of inversion-layer silicon solar cells is given. Minority-carrier lifetime measurements on inversion-layer emitters have been performed and the diffused p–n contact of PN-IL silicon solar cells has been optimized for high open-circuit voltages. PN-IL silicon solar cells with open-circuit voltages of 693 mV have been fabricated on 0.2 and 0.5-Ω cm FZ p-Silicon wafers. These values are the highest ever reported Voc's for inversion-layer silicon solar cells on p-Silicon. This demonstrates that inversion-layer silicon solar cells exhibit a similar potential for achieving high open-circuit voltages as silicon solar cells with a diffused p–n junction.  相似文献   

16.
The option to use the beam down optics of a solar tower system for large-scale and grid-connected concentrated photovoltaic (PV) cells is examined. The rationale is to use this system to split the solar spectrum. Part of the spectrum can be utilized for PV cells. For instance, but not limited to, mono-crystalline silicon cells can convert the 600–900 nm band to electricity at an efficiency of 55–60%. The rest of the spectrum remains concentrated and it can be used thermally to generate electricity in Rankine–Brayton cycles or to operate chemical processes. Two optical approaches for a large-scale system are described and analyzed. In the first concept, the hyperboloid-shaped tower reflector is used as the spectrum splitter. Its mirrors can be made of transparent fused silica glass, coated with a dielectric layer, functioning as a band-pass filter. The transmitted band reaches the upper focal zone, where an array of PV modules is placed. The location of these modules and their interconnections depend on the desirable concentration level and the uniformity of the flux distribution. The reflected band is directed to the second focal zone near the ground, where a compound parabolic concentrator is required to recover and enhance the concentration to a level depending on the operating temperature at this target. In the second approach, the total solar spectrum is reflected down by the tower reflector. Before reaching the lower focal plane, the spectrum is split and filtered. One band can be reflected and directed horizontally to a PV array and, in this case, the rest of the spectrum is transmitted to the lower focal plane. To illustrate the feasibility of these options, commercial silicon cells with antireflective coating, intended to operate under concentrated solar radiation in the range of 200–800 suns, were chosen. The results show that 6.5 MWe from the PV array and 11.1 MWe from a combined cycle can be generated starting from a solar heat input of 55.6 MW.  相似文献   

17.
Compared to the Czochralski (CZ) silicon used in microelectronic industry (M-CZ Si), the annealing behavior of oxygen in the CZ silicon used for solar cells (S-CZ Si) was investigated by means of FTIR and SEM. It was found that the oxygen concentration in S-CZ Si crystal was lower than in the M-CZ Si crystal. During single-step annealing in the temperature range of 800–1100°C, the oxygen in S-CZ Si was hard to precipitate, even if the material contained higher carbon concentrations. After pre-annealing at 750°C, many more oxygen precipitates were formed. The amount and density of the oxygen precipitates were almost the same as in M-CZ Si annealed in single step. It is considered that oxygen has no significant influence on the efficiency of solar cells made from Cz silicon if it is annealed only by a single step in the range of 800–1100°C.  相似文献   

18.
A high efficiency thin film silicon solar cell and module   总被引:2,自引:0,他引:2  
A photoelectric conversion efficiency of over 10% has been achieved in thin-film microcrystalline silicon solar cells which consist of a 2 μm thick layer of polycrystalline silicon. It was found that an adequate current can be extracted even from a thin film due to the very effective light trapping effect of silicon with a low absorption coefficient. As a result, this technology may eventually lead to the development of low-cost solar cells. Also, an initial aperture efficiency as high as 13.5% has been achieved with a large area (91 cm × 45 cm) tandem solar cell module of microcrystalline silicon and amorphous silicon (thin film Si hybrid solar cell). An even greater initial efficiency of 14.7% has been achieved in devices with a small size (area of 1 cm2), and further increases of efficiency can be expected.  相似文献   

19.
The light-soaked and annealing behaviors for silicon (Si)-based thin-film single-junction solar cells fabricated near the phase boundary using a very-high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) technique are investigated. The hydrogen dilution ratio is changed in order to achieve wide band gap hydrogenated amorphous Si (a-Si:H) and narrow band gap hydrogenated microcrystalline Si (μc-Si:H) absorbers. Just below the a-Si:H-to-μc-Si:H transition, highly hydrogen-diluted a-Si:H solar cells with a good stability against light-soaking and fast annealing behavior are obtained. In contrast, the solar cell fabricated at the onset of the μc-Si:H growth is very unstable and its annealing behavior is slow. In the case of μc-Si:H solar cells with the crystal volume fraction of 43–53%, they show the lowest light-induced degradation among the fabricated solar cells. However, it is very difficult to recover the degraded μc-Si:H solar cells via thermal annealing.  相似文献   

20.
To raise the output voltage of silicon solar cells several solar cells on one wafer can be monolithically interconnected. A solar cell system consisting of 20 solar cells on a 2×2 cm2 area has been produced on a 4” SOI-wafer with a 15 μm thick monocrystalline active layer. Under irradiation with an AM1.5G spectrum an open-circuit voltage of 7.5 V and current densities up to 17 mA/cm2 for the system have been measured. An increase in performance is expected, when the doping and contact processing is better suited and a light trapping structure is realized for the solar cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号