首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用Zn98Al和Zn72.5Al两种Zn-Al药芯钎料对SiCP/Al复合材料进行氩气保护钎焊试验,研究了钎焊温度和保温时间对接头剪切强度及显微组织的影响。结果表明,用这两种钎料在氩气保护炉中钎焊SiCP/Al复合材料,可以获得质量良好的钎焊接头。对Zn98Al钎料,当温度为490℃、保温45min时可获得剪切强度为71.01MPa的钎焊接头;而Zn72.5Al钎料,在温度为560℃、保温11 min时可获得剪切强度为63.71MPa的钎焊接头。两种钎料的钎焊接头显微硬度均略低于母材。两种接头钎缝区的XRD相结构分析发现,钎缝中都只存在α(Al)和β(Zn)两相;接头断口扫描观察显示,接头整体呈韧性断裂特征。  相似文献   

2.
采用BAg72Cu共晶钎料对奥氏体不锈钢与纯铜的真空钎焊工艺进行研究.通过剪切试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了钎焊温度和保温时间对钎焊接头组织和性能的影响.试验表明,钎缝中心区为AgCu共晶组织,两侧界面反应区为铜基固溶体,钎焊温度对钎焊接头的组织和性能影响明显,而保温时间对其影响不明显.当钎焊温度865℃、保温时间10min时,剪切强度最高,达到160 MPa.钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流淌较多,接头强度也较低.以865℃为钎焊温度,改变保温时间,在10~45 min保温时间内接头的剪切强度变化不大.  相似文献   

3.
用真空熔炼、惰性气体雾化的方法制备Ni-14Cr-10P金属粉末,再加入Ti粉和高分子聚合物高速搅拌分散制备了Ni-14Cr-10P-x Ti膏状活性钎料。用制备的焊膏在真空钎焊炉中钎焊C/C复合材料,然后测试了钎焊接头的抗剪切强度,采用SEM、EDS、XRD等方法对接头微观组织进行了分析。结果表明,在钎焊温度1000℃,保温时间30min时,接头获得了最高的抗剪切强度,然后随着钎焊温度的上升、保温时间延长,钎焊接头强度下降;添加Ti元素加快了钎焊强度随温度和保温时间的增加而下降的速度,结合微观组织结构,对Ti元素加入后钎焊强度随温度和保温时间增加而下降更为迅速的原因进行了分析。  相似文献   

4.
用真空熔炼、惰性气体雾化的方法制备Ni-14Cr-10P金属粉末,再加入Ti粉和高分子聚合物高速搅拌分散制备了Ni-14Cr-10P-x Ti膏状活性钎料。用制备的焊膏在真空钎焊炉中钎焊C/C复合材料,然后测试了钎焊接头的抗剪切强度,采用SEM、EDS、XRD等方法对接头微观组织进行了分析。结果表明,在钎焊温度1000℃,保温时间30min时,接头获得了最高的抗剪切强度,然后随着钎焊温度的上升、保温时间延长,钎焊接头强度下降;添加Ti元素加快了钎焊强度随温度和保温时间的增加而下降的速度,结合微观组织结构,对Ti元素加入后钎焊强度随温度和保温时间增加而下降更为迅速的原因进行了分析。  相似文献   

5.
采用Al-Cu-Si-Ni钎料在不同钎焊工艺参数下对5A06铝合金进行真空钎焊试验,研究钎焊温度与保温时间对接头微观组织与力学性能的影响。利用扫描电镜(SEM)和能谱仪(EDS)对接头的微观结构和物相进行分析,通过室温拉伸试验及显微硬度测试确定接头力学性能的演变。结果表明,接头界面结合区域形成多种金属间化合物,如Mg_2Si,CuAl_2等。550℃钎焊时,接头剪切强度明显高于540℃钎焊的接头,且随着钎焊保温时间的延长,接头剪切强度逐步提高。在550℃钎焊30min时接头剪切强度可达74 MPa。  相似文献   

6.
采用Al72-Cu20-Mg5-Ni3合金为钎料,对15%SiCp/A356复合材料进行氩气保护气氛钎焊。钎焊温度为570、580、590℃,保温时间为30 min。分析不同温度下焊接接头金相显微组织,检测各个接头的显微硬度和剪切强度。结果表明:当焊接温度为570℃时,焊接接头的质量最好,母材与钎料的相互结合较为良好,结合强度得到提高;焊接接头的剪切强度值也达到最大,为38.47 MPa。  相似文献   

7.
唐恒娟  陈思杰 《热加工工艺》2014,(9):191-192,195
采用Al5Si28Cu1.5Ti钎料,在真空钎焊炉中钎焊SiCP为55%的SiCP/Al6061铝基复合材料,钎焊温度580℃,研究了保温时间对接头组织性能的影响。结果表明,活性钛元素提高了钎料对复合材料的润湿性,保温40 min接头的组织性能最好,剪切强度为84 MPa。  相似文献   

8.
采用快冷甩带技术制备了Al-33.3Cu-6.0Mg-3.0Ni组分的箔状钎料,并把部分箔状钎料磨成粉状钎料,分别对6063铝合金进行真空钎焊,对钎焊接头的剪切强度进行测定,通过光学显微镜、扫描电镜结合能谱分析等方法对接头显微组织进行观察和分析。结果表明,真空钎焊最优工艺参数为:使用箔状钎料,压力4 MPa,加热温度为550℃、保温时间30 min。使用箔状钎料钎焊的接头剪切强度最大值为50.22 MPa,剪切强度明显高于使用粉状钎料钎焊的接头,粉状钎料钎焊接头中大量黑色点状区域的存在是造成接头强度明显降低的直接原因。  相似文献   

9.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

10.
研究了增强相体积分数为55%的Si Cp/Al-MMCs与可伐合金的真空钎焊,分析了钎焊温度和复合材料表面镀层对接头性能的影响规律。结果表明,Al-12.0Si-1.5Mg-4.0Ti钎料在真空条件下能很好地润湿55%Si Cp/Al-MMCs和可伐合金,合适的钎焊工艺参数为:复合材料表面镀铜、真空度6.5×10-3Pa、钎焊温度590℃、保温时间30 min,接头最大剪切强度可达64.9 MPa。当钎焊温度从570℃增加到590℃时,接头的剪切强度和显微硬度都逐渐增加。复合材料表面镀铜会显著增加钎缝以及界面区域的显微硬度。复合材料表面镀层会对接头剪切强度产生影响,在590℃以下钎焊时,无镀层的复合材料和可伐合金接头的剪切强度较高。而当钎焊温度达到590℃时,表面镀铜的复合材料与可伐合金接头的剪切强度最高。  相似文献   

11.
介绍了焊接参数对SiCp/2024Al铝基复合材料的真空钎焊组织和性能的影响.焊前利用颗粒暴露技术将复合材料表面颗粒部分暴露,并利用真空气相沉积使暴露表面合金化.使用M6钎料,在不同的钎焊工艺参数下对复合材料进行焊接.结果表明,焊接温度过低或者保温时间过短,钎缝结合面有残留的Cu,钎料对复合材料润湿不好.随钎焊温度增加,保温时间的进一步延长,Cu与Al基体完全反应,促进了钎焊过程.但随着钎焊温度和保温时间的进一步增加,母材中出现过烧导致的气孔.钎焊接头X射线衍射试验表明,接头中没有Al4C3脆性相生成.拉伸试验表明,钎焊参数为620℃,保温20min时,接头抗剪强度最高,达到202MPa.断口分析表明,钎料对复合材料的不润湿,复合材料过烧导致气孔,复合材料中颗粒的聚集是导致接头强度下降的主要原因.  相似文献   

12.
研究了增强相体积分数为55%的Si Cp/6063Al复合材料与可伐合金的真空钎焊,分析了钎焊温度和复合材料表面不同镀层对接头剪切强度的影响规律、接头显微组织以及显微硬度分布特征。结果表明,钎焊温度对接头的剪切强度影响很大,针对复合材料表面不同的镀层,其变化规律不一样。采用Ag57.6-Cu22.4-In10-Sn10钎料,在真空度为6.5×10-3Pa,钎焊温度为600℃并保温30 min时,无镀层的复合材料和可伐合金之间可获得最大剪切强度为61.4 MPa的接头。钎料无论对可伐合金,还是对镀镍层、镀铜层以及裸露的复合材料,其润湿性都较好。钎料与可伐合金界面区的硬度要比可伐合金中的硬度大,钎料与复合材料界面区的硬度随钎焊温度的升高而增加。  相似文献   

13.
对冷压烧结结合热挤压工艺制备的SiC/Cu复合材料,选用Ti和AgCuTi为钎料,采用不同的工艺进行真空钎焊试验.用金相显微镜和扫描电镜对母材和钎焊接头的剪切断口形貌进行分析,利用电子万能试验机对钎焊接头进行抗剪强度测试,将接头抗剪强度与母材抗剪强度进行对比以评判钎缝质量.结果表明,用Ti为钎料连接SiCp/Cu复合材料的连接状况要优于AgCuTi钎料,且连接温度850℃,保温时间为20 min时,抗剪强度最大为70.5 MPa,与母材抗剪强度相当;随着铜基复合材料中SiCp含量不断增加,钎焊接头室温抗剪强度不断下降,当SiCp含量超过10%时,抗剪强度快速下降.  相似文献   

14.
采用Al-Si-Mg钎料制备了表面Mo-Mn化后镀Ni的Al_2O_3陶瓷与1A95铝合金真空钎焊接头,研究了钎焊温度和保温时间对钎焊接头组织和剪切性能的影响,并分析了接头的界面微观组织及断口形貌。研究表明,最佳钎焊工艺为580℃×20 min,接头的抗剪强度达到74 MPa,此时接头界面结构为Al_2O_3/Mo-Mn/Al_3Ni/α-Al/1A95。随着钎焊温度的升高,界面处Al_3Ni化合物厚度增加;随着保温时间的延长,界面处产生了Al_(12)Mo化合物覆盖在Al_3Ni化合物上方。接头的断裂形式均为脆性断裂:当钎焊温度较低保温时间较短时,断裂主要发生在靠近铝合金与钎料层的界面处。最佳工艺条件下,断裂一部分发生在钎料和镀镍层的反应区内,一部分发生在靠近铝合金与钎料层的界面处。随着钎焊温度或保温时间进一步提高,断裂主要发生在钎料和镀镍层的反应区内。  相似文献   

15.
用铜基活性钎料对Cf/C复合材料进行真空钎焊,并对接头的微观组织、形成机理和接头强度进行研究。结果表明,使用铜基活性钎料可实现Cf/C复合材料的连接,且在实验温度范围内,钎料成分对接头强度具有重要影响。室温下焊接接头的最高剪切强度达21 MPa。  相似文献   

16.
制造氢氧催化燃烧换热器所用材料逐渐向高强高导铜合金过渡,而换热器翅片和隔板的钎焊关系到换热器的热效率、服役安全性和可靠性。本文就高强高导Cu3Ag0.5Zr合金翅片与隔板的钎焊展开研究。使用箔带Ag37.5Cu48.8Zn5.5Mn8.2作为钎料,对钎缝宽度为50-200 μm的Cu3Ag0.5Zr合金接头进行钎焊,钎焊温度为840℃-900℃,保温时间为5 min-20 min。通过水淬快速冷却的方法将保温阶段钎缝处固液界面形貌保留下来,利用扫描电镜和能谱仪对接头钎缝组织和剪切断口形貌进行研究,利用万能力学试验机对接头剪切性能进行测试。研究表明:钎缝组织的形成经历了母材向钎料区溶解、富Cu相等温凝固和降温凝固三个阶段,形成了三种钎缝组织。分别为:富Ag相呈网状分布于母材和钎料区富Cu相之间、钎料区AgCu共晶组织、共晶组织和富铜相组成钎料区组织,另外CuZr相分布于界面区和钎料区,钎料区中Mn固溶于富Ag相和富Cu相中,其中CuZr相和Mn元素和接头剪切强度有一定的相关性,钎缝组织中的CuZr相对削弱了接头剪切强度,Mn元素则强化了接头剪切性能。钎焊温度、保温时间和钎缝宽度通过影响钎缝处钎焊组织、CuZr相和钎料区Mn元素含量,影响接头剪切性能。当钎缝宽度为100 μm,在870℃保温5 min时,接头剪切强度达到最大,为308.29 MPa。  相似文献   

17.
采用四号锰基钎料真空钎焊2Cr13不锈钢,研究了钎焊温度对其接头组织和室温及高温剪切强度的影响,并与Ni-Cr-P钎料钎焊不锈钢接头进行了对比.结果表明:四号锰基钎料钎焊接头组织由Mn-Ni基的单相Mn-Ni-Cu-Fe-Cr-Co固溶体组成,接头室温剪切强度随着钎焊温度的升高逐渐增加;Ni-Cr-P钎料钎焊接头组织由Ni-Fe基固溶体和Ni(Cr,Fe)-P化合物组成,接头室温剪切强度低于四号锰基钎料钎焊接头的室温剪切强度.当测试温度超过500℃时,Ni-Cr-P钎料钎焊接头的高温剪切强度降低幅度不大,四号锰基钎料钎焊接头降低明显,但仍高于Ni-Cr-P钎料钎焊接头的高温剪切强度.  相似文献   

18.
本文采用CuMnNiCrSi钎料实现了对Ti(C,N)基金属陶瓷与低碳钢的真空钎焊连接。研究了钎焊温度和保温时间对钎焊接头剪切强度的影响,通过XRD、SEM和EDS对接头的物相、显微组织、元素分布及断口形貌进行分析。研究表明:在钎焊温度为1030℃,保温时间为20 min的工艺条件下,钎焊接头的结合强度达到最大,其剪切强度为301.5 MPa。Ti(C,N)基金属陶瓷/低碳钢焊缝由α-Ti基固溶体和Cr基固溶体构成。在金属陶瓷一侧的界面处形成Cu基固溶体,在钢一侧形成(Cu,Ni)固溶体和(Fe,Ni)固溶体。Ti(C,N)基金属陶瓷/低碳钢接头断裂发生在Cu基钎料处,其断裂方式为韧性断裂。  相似文献   

19.
利用自制的Zr-Ni钎料对具有铼涂层的碳碳复合材料与铌进行真空钎焊,确定了接头典型界面组织为C/C-Re复合材料/(Re)/(Re,Zr,Nb)+NiZr/ NiZr2+NiZr/ NiZr+Nb/Nb. 结果表明,钎焊过程中,铼涂层厚度变小,向钎缝中扩散,并与钎料元素形成了固溶体组织(Re,Zr,Nb),当钎焊保温时间过长时,Re元素向钎缝大量溶解,铼涂层与C/C复合材料脱离. 随钎焊温度升高及保温时间延长,接头抗剪强度均呈现出先升高后降低的变化趋势. 确定最佳焊接工艺参数为钎焊温度为1 110 ℃,保温时间为20 min,此时钎焊接头室温抗剪强度为19 MPa.  相似文献   

20.
使用PbO-B2O3-ZnO体系非晶玻璃钎料和PbTiO3晶体制成的复合玻璃钎料,辅助以阳极氧化和热压烧结工艺,在空气中实现了60vol.%SiCp/6063Al复合材料的钎焊连接。通过DSC、XRD和EDS等分析手段,研究了温度、时间对钎焊接头的影响。结果表明:母材的阳极氧化、钎焊温度的升高和保温时间的延长可以一定程度上提高接头的强度。当钎焊温度450℃,保温时间30min时,钎焊接头的压剪强度为33MPa。在钎焊过程中母材的氧化膜溶解于钎料,同时Al元素微量扩散,形成复合材料形式的焊缝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号