首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Conductive fillers are often added to thermoplastic polymers to increase the resulting composite's electrical conductivity (EC) which would enable them to be used in electrostatic dissipative and semiconductive applications. The resulting composite also exhibits increased tensile modulus. The filler aspect ratio plays an important role in modeling composite EC, and tensile modulus. It is difficult to measure the filler aspect ratio after the manufacturing process (often extrusion followed by injection molding) in the composite, especially when nanomaterials are used. The EC percolation threshold is a function of the filler aspect ratio; hence, knowledge of this percolation threshold provides a means to extract the filler aspect ratio. In this study, the percolation threshold of the composite was determined from EC measurements and modeling, which in turn was used to determine the filler aspect ratio for tensile modulus modeling. Per the authors' knowledge, this approach has not been previously reported in the open literature. The fillers; carbon black (CB: 2–10 wt %), multiwalled carbon nanotubes (CNT: 0.5–8 wt %), or exfoliated graphite nanoplatelets (GNP: 2–12 wt %); were added to polycarbonate (PC) and the resulting composites were tested for EC and tensile modulus. With the filler aspect ratio determined from EC values for CNT/PC and GNP/PC composites, the three‐dimensional randomly oriented fiber Halpin‐Tsai model accurately estimates the tensile modulus for the CNT/PC composites and the Nielsen model predicts the tensile modulus well for the CB/PC and GNP/PC composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Adding conductive carbon fillers to electrically insulating thermoplastic polymers increases the resulting composite's electrical conductivity, which would enable them to be used in electrostatic dissipative and semiconductive applications. In this study, varying amounts of carbon black (CB: 2 to 10 wt %), multiwalled carbon nanotubes (CNT: 0.5 to 8 wt %), or exfoliated graphite nanoplatelets (GNP: 2 to 15 wt %) were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (EC = 1/electrical resistivity). The percolation threshold was ~ 1.2 vol % CNT, ~ 2.4 vol % CB, and ~ 4.6 vol % GNP. In addition, three EC models (Mamunya, additive, and general effective media) were developed for the CB/PC, CNT/PC, and GNP/PC composites. The general effective media (GEM) model showed the best agreement with the experimental results over the entire range of filler concentrations (above and below the percolation threshold) for all three composite systems. In addition, the GEM model can be easily adapted for composites containing combinations of different conductive fillers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Adding conductive carbon fillers to insulating thermoplastic polymers increases the electrical conductivity of the resulting composite, which could allow them to be used in electrostatic dissipative and semiconductive applications. Adding fillers often increases viscosity, which can make the material more difficult to process. In this study, three different carbon fillers [carbon black (CB), carbon nanotubes (CNT), and exfoliated graphite nanoplatelets (GNP)] were studied via three different combinations of two different fillers (CB/CNT, CB/GNP, and CNT/GNP). These filler combinations were studied via three 32 factorial designs, which considered the following loading levels: CB: 0, 2, and 5 wt%; CNT: 0, 1, and 5 wt%; and GNP: 0, 2, and 5 wt%. These composites were compounded, injection molded, and tested for electrical conductivity and steady shear viscosity. CB and GNP exhibited classic filler behavior, increasing the composite viscosity with increased filler loading. CNT acted differently, lowering the composite viscosity with increased filler loading. When CB and GNP were combined, the viscosity increase was additive. When CNT was combined with either CB or GNP, the resultant composite had a lower viscosity than the corresponding single filler composite with equivalent loadings of CB or GNP. This viscosity lowering effect of CNT, even at loadings as low as 1 wt%, allows for increased filler loadings of CB or GNP with little impact on processability. Five different formulations (four containing two filler combinations) could be used for electrostatic dissipative applications and seven different formulations (six containing two filler combinations) may be used for semiconductive applications. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

4.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

5.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

6.
Adding conductive carbon fillers to thermoplastic polymers increases the resulting composite's electrical conductivity. Carbon black (CB) is very effective at increasing composite electrical conductivity at low loading levels. In this study, varying amounts (2 to 10 wt %) CB were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (1/electrical resistivity), thermal conductivity, and tensile and flexural properties. These results were compared with prior work done for carbon nanotubes (CNT) in polycarbonate. The percolation threshold was ~ 2.3 vol % CB compared to between 0.7 and 1.4 vol % CNT. At 8 wt % filler, the CNT/PC composite had an electrical resistivity of 8 ohm‐cm compared to 122 ohm‐cm for the CB/PC composite. The addition of CB to polycarbonate increased the composite electrical and thermal conductivity and tensile and flexural modulus. The 8 wt % (5.5 vol %) CB in polycarbonate composite had a good combination of properties for semiconductive applications. Ductile tensile behavior is noted in pure polycarbonate and in samples containing up to 8 wt % CB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

8.
为研究多种碳质填料混杂对聚丙烯(PP)流变性能的影响,采用熔融共混法制备了聚丙烯(PP)/石墨烯(GNP)/碳纳米管(CNT)/炭黑(CB)复合材料,采用旋转流变仪研究了复合材料的流变行为。结果表明,加入的碳质填料,显著提高了复合材料的储能模量(G')、损耗模量(G″)以及复数黏度(η*)。在相同含量下,PP/CNT复合材料流变逾渗值最小,其次是PP/CB,最后是PP/GNP。当CNT含量超过0.5%时,PP/GNP/CNT复合材料出现了模量平台;当CB含量超过3%时,PP/GNP/CB复合材料出现模量平台;CNT与CB的协同作用最佳,CNT和CB的加入有利于GNP的分散;GNP与少量的CNT和CB共混能使G'、G″以及η*得到明显提高,同时,能够大幅减小流变逾渗值;纯PP以及PP/GNP复合材料的损耗因子随频率的增加而下降,PP/CNT、PP/CB、PP/GNP/CNT/CB复合材料损耗因子随频率增加呈先升高后下降的趋势。  相似文献   

9.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

10.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

12.
BACKGROUND: The effects of filler geometry are important for understanding the internal structure and physical properties of polymer composites. To investigate the effects of filler geometry on electrical conductivity as well as morphological and rheological properties, three types of polycarbonate (PC) composites were prepared by melt compounding with a twin‐screw extruder. RESULTS: The electrical conductivity of PC/carbon black (CB) and PC/graphite (carbon) nanofibre (CNF) composites did not show a percolation threshold through the entire filler loading ranges. However, PC‐blend‐carbon nanotube (CNT) composites showed a percolation electrical threshold for a filler loading of 1.0 to 3.0 wt% and their maximum electrical conductivity approached 10?3 S m?1. PC‐blend‐CB and PC‐blend‐CNF composites showed Newtonian behaviour like pure PC matrix, but PC‐blend‐CNT composites showed yield stress as well as increased storage modulus and strong shear thinning behaviour at low angular frequency and shear rate due to strong interactions generated between CNT–CNT particles as well as PC molecules and CNT particles on the nanometre scale. CONCLUSIONS: The electrical conductivity of the PC composites with different carbon constituents was well explained by the continuous network structure formed between filler particles. The network structure was confirmed by the good dispersion of fillers as well as by the yield stress and solid‐like behaviour observed in steady and dynamic shear flows. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

14.
The preparation and characterization of a biobased electromagnetic absorbing composites derived from natural lacquer as a renewable resource with microwave‐absorption fillers, including Ni–Zn ferrite and carbonyl iron (CI) as magnetic metals and soot and carbon nanotube (CNT) as carbon materials, were investigated in terms of the gel content, hardness, drying properties, and electromagnetic absorption properties. Interestingly, composites with ferrite and CI contained up to 320 and 550 wt %, respectively, of these compounds. This quite high loading capacity of the metal fillers in a natural‐lacquer base could have been due to the high compatibility between the filler and the natural lacquer; this indicated that the natural lacquer worked as a binder for these metals. The morphology of the biobased composite was characterized by scanning electron microscopy. The electromagnetic absorption properties of composites were characterized in the frequency range from 0.05 and 20 GHz by the reflection loss (RL) measurement method in terms of the kind of fillers and filler loading. The natural lacquer did not affect the absorption properties of the fillers. Biobased composites showed over 99% electromagnetic absorption in the frequency range 3.0–4.0 GHz for 280 wt % ferrite and 8.9–9.7 GHz for 200 wt % CI. Conversely, 10 and 20 wt % soot exhibited good performance (RL < ?20 dB) between 16.5 and 17.3 and between 8.8 and 9.2 GHz, respectively. The areas with RL values of less than ?20 dB of the CNT composites were 10.4–11.0 GHz for 5 wt % and 14.6–15.2 GHz for 10 wt %. Hence, natural lacquer can be used as a binder material for electromagnetic absorption composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44131.  相似文献   

15.
In this study, two different carbon fillers: carbon black (CB) and graphite nanoplatelets (GNP) are studied as conductive fillers for the preparation of conductive polypropylene (PP) nanocomposites. In order to obtain a homogenous dispersion of GNP, GNP/PP composites were prepared by two different methods: solid state mixing (SSM) and traditional melt mixing (MM). The result shows that MM is more efficient in the dispersion of GNP particles compared to SSM method. PP nanocomposites containing only one conductive filler and two fillers were prepared at different filler concentrations. Based on the analysis of electrical and rheological properties of the prepared nanocomposites, it shows that a hybridized composite with equal amounts of GNP and CB has favorable processing properties. Conductive fibers with a core/sheath structure were produced on a bicomponent melt spinning line. The core materials of these fibers are the hybridized GNP/CB/PP nanocomposite and the sheath is pure polyamide. It was found that GNPs were separated during melt and cold drawing which results in the decrease of conductivity. However, the conductivity could partly be restored by the heat treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2579–2587, 2013  相似文献   

16.
Nanocomposites using copper nanowires (CuNWs) or carbon nanotubes (CNTs) as fillers with polypropylene (PP) as matrix were prepared by miscible solution mixing and precipitation method. Comparative studies on electrical conductivity and electromagnetic interference shielding properties were reported. On the conductivity curve, a plateau was found for both CuNW/PP composite and CNT/PP composite. The plateaus are located at a different concentration range for each composite type: for CuNW/PP composite, it is between 0.8 and 1.7 vol %, while for CNT/PP composite the plateau occurs in a narrower range between 0.4 and 0.6 vol %. The shielding effectiveness (SE) increases with increased concentration of fillers. CNT/PP composite has higher SE at concentrations less than 2 vol %; the two curves cross near 10 dB at this point and at concentrations higher than 2 vol %, CuNW/PP composite has higher SE. © 2014 American Institute of Chemical Engineers AIChE J, 61: 296–303, 2015  相似文献   

17.
This work demonstrates the fabrications and characterizations of polyaniline (PAni) composites containing single-walled carbon nanotubes (SWCNTs), graphite nanosheets (GNS), or hybrid fillers (SWCNTs/GNS). The characterization of microstructure, examination of fracture surface morphologies, and measurement of electric conductivity and electromagnetic interference shielding efficiency (EMI SE) were performed. It was found that both the electric conductivity and the EMI SE increase with filler loading, and the nanocomposites filled with 1.0 wt.% SWCNTs/GNS possessed the highest electric conductivity of 16.2 S/cm and total EMI SE of 27.0 dB. The experimental results also show that absorption is the primary mechanism of EMI SE for all of the loadings and fillers.  相似文献   

18.
In this study, poly(methyl methacrylate) (PMMA)/carbon black (CB), PMMA/carbon fiber (CF), and PMMA/carbon nanotube (CNT) conductive composite films with different filler concentrations are prepared using the solution casting technique. Both perpendicular and in‐plane direction conductivity of all the binary composite films are investigated, percolation thresholds (?c) of both directions of PMMA/CB, PMMA/CF, and PMMA/CNT composite films are investigated and the experimental data are fitted using McLachlan’s equation. For all the three investigated films, the perpendicular ?c,⊥ and in‐plane ?c,∥ with different fillers show totally different behaviors. Pristine CB, CF, and CNT as well as PMMA/CB, PMMA/CF, and PMMA/CNT composite films are discussed. The gravity effect of the fillers is found to be most significant in the PMMA/CB system. A schematic diagram of PMMA composite films with CB, CF, and CNT as filler prepared from solution casting process is presented to explain the distribution gradient of the fillers in the perpendicular direction of the film after solution casting. A power law behavior is revealed for different filler types (CB, CF, CNT) correlating the exponent t for McLachlan’s equation and corresponding ?c for in‐plane and perpendicular directions.  相似文献   

19.
Composites, comprised of acrylonitrile styrene acrylate copolymer (ASA)/graphite (GR) with high electromagnetic interference shielding effectiveness (EMI SE), were fabricated by the introduction of carbon black (CB). The effects of CB on properties such as EMI SE, morphology, heat resistance, rheological and mechanical performance of the composites were characterized using a scanning electron microscope (SEM), rotational rheometer, electromagnetic shielding measuring instruments. The graphite and carbon black exhibited positive synergistic action, which promoted the complete formation of conductive networks in ASA matrix. The EMI SE and electrical conductivity of the ASA/GR/CB composites increased with higher CB loadings. In the frequency range of 30–3000 MHz, the maximum EMI SE of ASA composites with 50 % fillers reached 40 dB, but with 40 % fillers this property reached its maximum value of 50 dB. The flexural strength of ASA/GR/CB composites started to decline as CB loading exceeded 5 %. The heat resistance of the composites was improved due to the addition of CB. In this respect, the vicar softening temperature (VST) of the composites with 40 % fillers increased from 115.1 to 132.7 °C, and the VST of the composites with 50 % fillers was elevated from 125.4 to 138.9 °C.  相似文献   

20.
The objective of this study was to investigate three kinds of filler with completely different morphology on mechanical properties of natural rubber (NR). Coal gangue (CG) are derived from natural deposits are composed principally by illite and quartz. CG, carbon black (CB), and multiwalled carbon nanotube (CNT) were used as hybrid fillers in NR. CNTs were dispersed into NR latex by ultrasonic irradiation and then the mixed latex were coagulated to obtain the CNTs/NR masterbatch, then mechanical mixing method was employed to prepare the CG/CB/CNTs/NR composites. The addition of CG, CB, and CNTs to NR was varied with the total filler loading fixed at 35 phr. The mechanical properties of NR composites were studied in terms of tensile and dynamic mechanical analysis (DMA). The results showed that the tensile strength and modulus 300% (M300) of all hybrid samples were higher than the composites only loaded CG; and the highest tensile strength of NR loaded with hybrid fillers achieved at sample of loading amount of CG 17.5, CB 15.5, and CNTs 2 phr, whose M300 and elongation at break was obviously higher than that of only CB loaded NR composites; The inclusion CG improves the tensile strength of NR without the sacrifice of its extensibility, while CB and CNTs brings together the enhancement in the ultimate strength and the reduction in the extensibility. DMA results revealed that the existence of CG can improve the dispersion of CB and CNTs in NR matrix. POLYM. COMPOS., 37:3083–3092, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号