首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
This research analyzes the effect of ground tire rubber (GTR) and a novel metallocene‐based ethylene–propylene copolymer (EPR), with high propylene content, on the morphology and mechanical behavior of ternary polymer blends based on a highly flowable polypropylene homopolymer (PP). The PP/EPR blends morphology, with very small domains of EPR dispersed in the PP matrix, indicates a good compatibility among these materials, which leads to a significant improvement on elongation at break and impact strength. The incorporation of EPR on the rubber phase of thermoplastic elastomeric blends (TPE) based on GTR and PP (TPEGTR) has a positive effect on their mechanical performance, attributed to the toughness enhancement of the PP matrix and to the establishment of shell‐core morphology between the rubber phases. The mechanical properties of the ternary blends reveal that TPEGTR blends allow the upcycling of this GTR material by injection molding technologies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42011.  相似文献   

2.
谢安准 《中国塑料》2016,30(3):16-21
采用一种简便易行的方法使高度缠结的超高相对分子质量聚乙烯(PE-UHMW)与乙丙橡胶(EPR)的分子链得到有效的扩散,并最终将EPR/PE-UHMW预混物与聚丙烯(PP)共混形成PP/EPR/PE-UHMW三元共混物。并研究了该三元共混物的流变性能和结晶性能。结果表明,在预混物体系中,经历高温熔融处理后,流变曲线出现不同于一般EPR材料的难松弛结构的低频平台区,说明PE-UHMW与EPR分子链相互扩散形成长分子链缠结结构;其缠结结构在PP/EPR/PE-UHMW共混物中减慢了PP基体流变曲线低频平台区出现的趋势,限制了EPR向PP基体的扩散; EPR与PE-UHMW分子链之间的相互扩散,对高度缠结的PE-UHMW具有增塑作用,导致PE-UHMW结晶温度下降和结晶度上升;二元预混物添加进入PP基体中,促使PP多重熔融现象的发生。  相似文献   

3.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

4.
研究了三元乙丙橡胶/聚丙烯(EPDM/PP)共混物和动态硫化EPDM/PP热塑性弹性体(TPV)的等温结晶行为及形态结构,并用Avrami方程对其进行等温结晶动力学分析。结果表明,EPDM/PP共混物和EPDM/PP TPV的等温结晶行为符合Avrami方程,在相同的结晶温度下,TPV比共混物的Avrami指数小,半结晶时间短,结晶速率常数大;EPDM/PP共混物为双连续相结构,而EPDM/PP TPV是以硫化的细小橡胶颗粒为分散相、PP为连续相的"海-岛"结构,橡胶颗粒尺寸约为0.5μm。  相似文献   

5.
Blends of isotactic polypropylene (PP), ethylene‐propylene rubber copolymer (EPR), and ethylene‐propylene crystalline copolymer (EPC) can be produced through in situ polymerization processes directly in the reactor and blends with different structure and composition can be obtained. In this work we studied the structure of five reactor‐made blends of PP, EPR, and EPC produced by a Ziegler‐Natta catalyst system. The composition of EPR was related to the ratio between ethylene and propylene used in the copolymerization step. The ethylene content in the EPR was in the range of 50–70 mol %. The crystallization behavior of PP and EPC in the blends was influenced by the presence of the rubber, and some specific interactions between the components could be established. By preparative temperature rising elution fractionation (P‐TREF) analysis, the isolation and characterization of crystalline EPC fractions were made. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2155–2162, 2004  相似文献   

6.
The objective of this work is to study the properties of blends that could result from the recycling of end-of-life vehicles (ELV). While ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) have been used extensively as elastomeric additives in poly(propylene) (PP), they can be substituted by ethylene-1-octene copolymer (EOC). As a consequence, the matter resulting from the sorting of ELV might be more complex and made of PP, EPR, and EOC. The effect of incorporating EOC [that is a polyethylene elastomer (PEE)] and maleic anhydride grafted polypropylene (PP-g-MAH) on the rheological, thermal, and morphological properties of PP/EPR blends has been investigated. Blends of various compositions (with and without compatibilizer) were prepared using a corotating twin-screw extruder. The results were compared to the ones presented by a commercial (PP/EPR) blend. The EPR phase is dispersed in the form of spherical particles in (PP/EPR). The EOC phase is dispersed in the form of aggregated particles. Dynamic viscoelastic and differential scanning calorimetry properties of (PP/EPR)/EOC blends shows the incompatibility of the components even in presence of PP-g-MAH copolymer. POLYM. ENG. SCI., 47:1009–1015, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
The crystallization, melting behavior, and morphology of a low ethylene content block propylene–ethylene copolymer (BPP) and a high-density polyethylene (HDPE) blend were studied. It was found that the existence of ethylene–propylene rubber (EPR) in BPP has more influence on the crystallization of HDPE than on that of PP. This leads to the decreasing of the melting temperature of the HDPE component in the blends. It is suggested that the EPR component in BPP shifted to the HDPE component during the blending process. The crystallinity of the HDPE phase in the blends decreased with increasing BPP content. The morphology of these blends was studied by polarized light microscopy (PLM) and SEM. For a BPP-rich blend, it was observed that the HDPE phase formed particles dispersed in the PP matrix. The amorphous EPR chains may penetrate into HDPE particles to form a transition layer. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2469–2475, 1998  相似文献   

8.
The structure and properties of polyolefin blends of ethylene–propylene–diene terpolymer (EPDM) and polypropylene were studied. Blends were prepared in a laboratory internal mixer where EPDM was cured with PP under shear with dicumyl peroxide (DCP) at different shear conditions (blend–cure). Blends were also prepared for comparison from EPDM which were dynamically cured in the absence of PP and blended later (cure–blend). The effect of DCP concentration, intensity of the shear mixing, and rubber/plastic composition were studied. In blend–cure, the melt viscosity increased with increasing DCP concentration in blends of 75% EPDM and 25% PP, but it decreased with increasing DCP concentration in blends of 75% PP and 25% EPDM. In cure–blend, however, the melt viscosity increased with increasing DCP concentration for all compositions. The melt viscosity decreased with increasing intensity of the shear mixing presumably due to the formation of the smaller segregated microdomain of the crosslinked EPDM gels in both blend–cure and cure–blend materials. The crystallization rate was higher in EPDM/PP blends than in PP homopolymer. The crystallization rates for various blending conditions were also compared.  相似文献   

9.
高流动性聚丙烯增韧体系的研究   总被引:5,自引:0,他引:5  
比较了聚烯烃弹性体、三元乙丙橡胶等对聚丙烯的改性效果,讨论了在增韧母料和降温母料的共同作用下这两种增韧剂的不同影响,对不同体系的扫描电镜结果和结晶参数进行了分析。  相似文献   

10.
The formulation of recycled thermoplastic elastomeric materials (TPE) based on ground tyre rubber (GTR), generated from end of life tyres, can be an alternative strategy to deal with a type of waste responsible for increasingly environmental problems over the past decades. The incompatibility of GTR with thermoplastics places several issues on the formulation of these materials, which this study tries to overcome. An encapsulation strategy of the GTR by an elastomeric phase is proposed in this work to overcome the lack of adhesion between the materials. Ternary blends, composed of a highly flowable polypropylene homopolymer, an ethylene propylene diene monomer (EPDM) and GTR were formulated and their morphology and mechanical properties analyzed. The morphology of the blends showed interaction between the materials, revealing that the encapsulation of GTR by a rubber phase can be an adequate strategy to formulate recycled‐based TPE materials, if the dimension of the GTR particles is controlled and taken into consideration. The mechanical properties revealed the replacement effect of EPDM by GTR, and its dependence on the amount of that replacement. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40160.  相似文献   

11.
A thermoplastic vulcanizate (TPV) of a ethylene–propylene–diene terpolymer (EPDM) and nylon copolymer (PA) was prepared by dynamic vulcanization. Maleic anhydride (MAH)–grafted EPDM (EPDM–g–MAH), MAH‐grafted EPR (EPR–g–MAH), and chlorinated polyethylene (CPE) were used as compatibilizers. The effect of dynamic vulcanization and compatibilizer on the crystallization behavior of PA was investigated. Differential scanning calorimeter measurement results showed no pronounced shift in the crystallization temperature for PA in EPDM–PA TPV compared to that for PA in the neat state, whereas the crystallization temperature increased after adding compatibilizer. The decrease in the crystallinity of TPVs was a result of the crystallization occurring in confined spaces between rubber particles. The equilibrium melting temperature (Tm0) of the PA copolymer was measured and was determined to be 157°C. The isothermal crystallization kinetics of PA in the neat and TPV states also was investigated. The crystallization rate was highest in the compatibilized TPV and lowest in the neat PA, whereas it was intermediate in the uncompatibilized TPV unvulcanized blends. Compared with unvulcanized EPDM–PA blends, the dynamic vulcanization process seemed to cause an obvious increase in the crystallization rate of the PA copolymer, especially when a suitable compatibilizer was used. This occurred because the dynamic vulcanization introduced fine crosslinked rubber particles that could act as heterogeneous nucleating centers. In addition, the use of a suitable compatibilizer permitted the formation of finely dispersed vulcanized rubber particles and therefore increased the density of the nucleating centers. The complex morphology of the blends was investigated by atomic force microscopy to evaluate the effect of compatibilizer on the size of the dispersed rubber particles. Compared with the morphology of TPVs with the same dosage of EPDM–g–MAH compatibilizer, the morphology of TPVs using EPR–g–MAH as compatibilizer showed much smaller dispersed rubber particles, which may have contributed to the higher crystallization rate. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 824–829, 2003  相似文献   

12.
Abstract

Compounds of ground tyre rubber (GTR) and polypropylene (PP) were prepared in an internal mixer and characterised by means of mechanical, thermal and morphological testing. Only physical melt mixing could not provide a suitable interface compatibilisation and leads to compounds with poor mechanical properties. However, the application of a reactive melt mixing process, using organic peroxides as radical donators, was found to be suitable to initiate a compatibilisation reaction via interphase grafting. These compatibilised GTR/PP elastomeric alloy (EA) systems exhibit interesting mechanical properties which are close to that of conventional two phase thermoplastic elastomers (TPE) based on dynamically vulcanised ethylene propylene diene monomer (EPDM)/PP blends. Results of the morphology investigations substantiate the occurrence of a compatibilisation reaction between rubber particles and PP matrix during reactive mixing which is most probably responsible for the enhanced material properties of the GTR/PP EA.  相似文献   

13.
Thermal and morphological studies have been performed on polymer blends based on ethylene–octene copolymer (PEE)/PP and ethylene–propylene–diene copolymer (EPDM)/PP. The thermal and morphological behavior of PEE, EPDM, PEE/PP, and EPDM/PP systems were analyzed by differential scanning calorimetry (DSC) and polarizing light microscopy, respectively. It was observed that the behaviors of crystallization kinetics of PEE/PP and EPDM/PP blends were similar. It was also observed that addition up to 10–20% (w/w) of elastomers resulted in increasing of spherulite size. The heat of fusion (ΔHf) and crystallinity degree of PEE/PP and EPDM/PP systems decreased when the elastomer contents were increased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3530–3537, 2001  相似文献   

14.
The crystallization of isotactic polypropylene (iPP) in its blends with ethylene–propylene–diene terpolymer (EPDM), reinforced with different fibers, is described in this work. In particular, the effects of both the fibers and the EPDM on the crystallization kinetics and morphology of iPP are analyzed. The study was performed using differential scanning calorimetry (DSC) in dynamic and isothermal conditions and optical microscopy. It was found that all the fibers act as effective nucleant agents on iPP crystallization independently of the blend composition. The results obtained highlight the accelerating effect of the fibers and of the EPDM on the PP crystallization up to a certain EPDM percentage. The halftime of crystallization, τ1/2, and the overall crystallization rate, Kn, increase in the presence of all the fibers analyzed, showed the aramidic ones the most effective. The isothermal crystallization kinetics of ternary composites based on PP–EPDM blend matrices reinforced with different types of fibers can be modeled using the Avrami equation. On the other hand, the kinetic curves obtained under nonisothermal conditions provide a further confirmation of the nucleating action of the fibers on the PP crystallization. Optical polarizing microscopy was also used to investigate the effect of EPDM on the spherulite growth and the transcrystallinity phenomenon on the surface of the fibers. The results of such analysis showed that the transcrystallinity phenomenon is hindered at high rubber percentages. As in the case of the rate of crystallization, the highest proportion of transcrystallinity was observed in the presence of the aramidic fibers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1063–1074, 2001  相似文献   

15.
The mechanical properties and morphological structures of blends based on Zn2+ neutralized low degree sulfated ethylene propylene diene monomer rubber (Zn–SEPDM) ionomer and polypropylene (PP) were studied. It was found that Zn2+ neutralized low degree sulfated EPDM ionomer and PP blends, which are new thermoplastic elastomeric materials, have better mechanical properties than those of PP/EPDM blend. Theoretical analysis of tensile data suggests that there is an increase of the extent of interaction between PP and EPDM in the presence of a low degree of Zn2+, which is also an indicator of better interfacial adhesion between PP and Zn–SEPDM than that between PP and EPDM. SEM results proved that the finer dispersed phase sizes and the shorter interparticle distances are the main reasons for the improved mechanical properties of the PP/EPDM blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1504–1510, 2004  相似文献   

16.
A dynamically photocrosslinked polypropylene (PP)/ethylene–propylene–diene (EPDM) rubber thermoplastic elastomer was prepared by simultaneously exposing the elastomer to UV light while melt‐mixing in the presence of a photoinitiator as well as a crosslinking agent. The effects of dynamic photocrosslinking and blend composition on the mechanical properties, morphological structure, and thermal behavior of PP/EPDM blends were investigated. The results showed that after photocrosslinking, tensile strength, modulus of elasticity, and elongation at break were improved greatly. Moreover, the notched Izod impact strength was obviously enhanced compared with corresponding uncrosslinked blend. Scanning electron microscopy (SEM) morphological analysis showed that for uncrosslinked PP/EPDM blends, the cavitation of EPDM particles was the main toughening mechanism; whereas for dynamically photocrosslinked blends, shear yielding of matrix became the main energy absorption mechanism. The DSC curves showed that for each dynamically photocrosslinked PP/EPDM blend, there was a new smaller melting peak at about 152°C together with a main melting peak at about 166°C. Dynamic mechanical thermal analysis (DMTA) indicated that the compatibility between EPDM and PP was improved by dynamic photocrosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3371–3380, 2004  相似文献   

17.
Liquid–liquid (L–L) phase separation and its effects on crystallization in polypropylene (PP)/ethylene–propylene rubber (EPR) blends obtained by melt extrusion were investigated by time‐resolved light scattering (TRLS) and optical microscopy. L–L phase separation via spinodal decomposition (SD) was confirmed by TRLS data. After L–L phase separation at 250°C for various durations, blend samples were subjected to a temperature drop to 130°C for isothermal crystallization, and the effects of L–L phase separation on crystallization were investigated. Memory of the L–L phase separation via SD remained for crystallization. The crystallization rate decreased with increasing L–L phase‐separated time at 250°C. Slow crystallization for the long L–L phase‐separated time could be ascribed to decreasing chain mobility of PP with a decrease in the EPR component in the PP‐rich region. The propylene‐rich EPR exhibited good affinity with PP, leading to a slow growth of a concentration fluctuation during annealing. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 695–700, 2001  相似文献   

18.
Virgin ethylene propylene diene monomer (EPDM) rubber in a thermoplastic elastomeric blend of polypropylene (PP) and EPDM rubber was substituted by ground EPDM vulcanizate of known composition, after which the mechanical properties of the raw EPDM/waste EPDM/PP blends were determined. The ratio of the rubber content in the waste EPDM (r‐W‐EPDM) to the raw EPDM (R‐EPDM) in the blends was varied from 0 : 100 to 45 : 55. Attempts to replace higher amounts (>45%) of R‐EPDM by W‐EPDM failed because of processing difficulty. Although a drop in mechanical properties of the blends was observed at lower loadings of W‐EPDM, the properties showed improvement at intermediate W‐EPDM loadings. The R‐EPDM/W–EPDM/PP blends were found to be reprocessable. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3304–3312, 2001  相似文献   

19.
Mechanical and thermal properties of devulcanized rubber (DR)/polypropylene (PP)/ethylene propylene diene monomer blends (EPDM) were studied at various concentrations of dicumyl peroxide (DCP) and gamma radiation doses. The blends showed improved mechanical properties for vulcanized sample. The coupling of DR/PP/EPDM with different proportions of DCP was investigated by X‐ray diffraction and scanning electron microscopy techniques. Evaluation of the developed blends, unirradiated and gamma irradiated, was carried out using elastic modulus, tensile strength, elongation at break, thermogravimetric analysis, kinetic analysis, and DSC measurements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40611.  相似文献   

20.
In recent decades, great attention has been devoted to the toughening of isotactic poly(propylene) (PP) with elastomers such as ethylene–propylene rubber (EPR). The most important reasons for this interest are the moderate cost and favorable properties of PP. This article is focused on the role of EPR in the deformation and fracture mechanism of PP/EPR blends with different volume fractions of elastomer phase. Differential scanning calorimetry (DSC), tensile tests, and microscopy techniques were used in this study. The fracture mechanism of isotactic PP toughened by EPR (PP/EPR) has also been studied by three point bending (3‐PB) and four point bending (4‐PB) tests. Rubber particle cavitation appears to be the main mechanism of microvoid formation, although some matrix/particle debonding was observed. The investigation of the toughening mechanism shows that a wide damage zone spreads in front of the pre‐crack. Optical microscopy (OM) illustrates that, in pure PP, crazing is the only fracture mechanism, and no evidence of shear yielding is found, while in PP blends craze‐like features associated with shear yielding are observed, which have been identified as high shear localized dilatational bands. This type of deformation pattern supports a model previously proposed by Lazzeri 1 to explain the interparticle distance effect on the basis of the stabilization effect on dilatational band propagation exerted by stretched rubber particles. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3767–3779, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号