首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal aim of this study is to explore the effect of chitosan on the physical properties of cotton fabrics in rapid curing crease‐resistant processing. It was determined that compared with the traditional three‐stage processing, the addition of chitosan is beneficial to the absorbency of processed fabrics, dry‐wet wrinkle recovery angle, and tensile strength retention. In addition, the dry‐wet wrinkle recovery angle of processed fabrics increases with the increase of curing temperature and curing treatment time, but absorbency and tensile strength retention both decrease. Also, the dry‐wet wrinkle recovery angle and tensile strength retention of processed fabrics increase with higher chitosan concentrations, but the fabric's absorbency is reduced. In general, use of 0.5%≈︁0.75% chitosan with DMEU curing treatment conditions of 8%, 200°C for 30 s will provide optimum physical property balance for processed fabrics. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 35–40, 2000  相似文献   

2.
High‐performance regenerated cellulose fibers were prepared from cellulose/1‐butyl‐3‐methylimidazolium chloride (BMIMCl) solutions via dry‐jet wet spinning. The spinnability of the solution was initially evaluated using the maximum winding speed of the solution spinning line under various ambient temperatures and relative humidities in the air gap. The subsequent spinning trials were conducted under various air gap conditions in a water coagulation bath. It was found that low temperature and low relative humidity in the air gap were important to obtain fibers with high tensile strength at a high draw ratio. From a 10 wt % cellulose/BMIMCl solution, regenerated fibers with tensile strength up to 886 MPa were prepared below 22 °C and relative humidity of 50%. High strengthening was also strongly linked with the fixation effect on fibers during washing and drying processes. Furthermore, an effective attempt to prepare higher performance fibers was conducted from a higher polymer concentration solution using a high molecular weight dissolving pulp. Eventually, fibers with a tensile strength of ~1 GPa and Young's modulus over 35 GPa were prepared. These tensile properties were ranked at the highest level for regenerated cellulose fibers prepared by an ionic liquid–based process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45551.  相似文献   

3.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

5.
Chitosan and poly(vinyl alcohol) blend fibers were prepared by spinning their solution through a viscose‐type spinneret at 25°C into a coagulating bath containing aqueous NaOH and ethanol. The influence of coagulation solution composition on the spinning performance was discussed, and the intermolecular interactions of blend fibers were studied by infrared analysis (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM) and by measurements of mechanical properties and water‐retention properties. The results demonstrated that the water‐retention properties and mechanical properties of the blend fibers increase due to the presence of PVA in the chitosan substract, and the mechanical strength of the blends is also related to PVA content and the degree of deacetylation of chitosan. The best mechanical strength values of the blend fibers, 1.82 cN/d (dry state) and 0.81 cN/d (wet state), were obtained when PVA content was 20 wt % and the degree of deacetylation of chitosan was 90.2%. The strength of the blend fibers, especially wet tenacity could be improved further by crosslinking with glutaraldehyde. The water‐retention values (WRV) of the blend fibers were between 170 and 241%, obviously higher than pure chitosan fiber (120%). The structure analysis indicated that there are strong interaction and good miscibility between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2558–2565, 2001  相似文献   

6.
Biodegradable plastics (GSD) based on soy dreg (SD) were prepared by compression‐molding, with glycerol as the plasticizer and glutaraldehyde (GA) as the cross‐linker. The structure and properties of the GSD sheets were investigated by Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), scanning electron microscope (SEM), and tensile test methods. The results indicate that when GA content was 6.8%, the tensile strength (σb) of the sheet reached the maximum value of 14.5 MPa. Moreover, the strength and water resistance of the sheets coated with castor‐oil‐based polyurethane/nitrochitosan interpenetrating network (IPN) coating were significantly enhanced to 24.6 MPa in the dry state and 9.8 MPa in the wet state. Simultaneously, the test of biodegradability of the GSD sheet in a mineral salts medium containing microorganisms and agar proved that GSD could be fully biodegradable. This work has provided a novel way to utilize low‐cost SD to prepare biodegradable plastics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 422–427, 2003  相似文献   

7.
Alginate and soy protein isolate blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a novel coagulating bath containing aqueous CaCl2, HCl, and ethanol. The structures and properties of the fibers were studied with the aids of infrared spectra (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM). Mechanical properties and water‐retention properties were measured. And with the sample of AS1 fiber (soy protein isolate weight content was 10%), the effects of the composition of the novel coagulating bath were also studied. The best values of the tensile strength of AS1 were 14.1 cN/tex in the dry state and 3.46 cN/tex in the wet state, respectively. Both the dry state and wet state breaking elongation were also having the best value 20.71% and 56.7% with AS1. Mechanical properties of the AS1 enhanced with the CaCl2 content increased in the coagulating bath. When the HCl content was 1%, the mechanical property of the fiber was best. Ethanol in the coagulating bath increased the wet mechanical properties of the fiber by 41.2% (tensile strength) and 45.1% (breaking elongation) when the ethanol weight content in the coagulating bath was 50%; but it had little effect on the dry mechanical properties. And the water‐retention value (WRV) of blend fibers decreased as the amount of soy protein isolate was raised. The structure analysis indicated that there were strong interaction and a certain level of miscibility between alginate and soy protein isolate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 425–431, 2006  相似文献   

8.
Chemical cellulose (dissolving pulp) was prepared from ascidian tunic by modified paper‐pulp process (prehydrolysis with acidic aqueous solution of H2SO4, digestion with alkali aqueous solution of NaOH/Na2S, bleaching with aqueous NaOCl solution, and washing with acetone/water). The α‐ cellulose content and the degree of polymerization (DPw) of the chemical cellulose was about 98 wt % and 918, respectively. The Japanese Industrial Standard (JIS) whiteness of the chemical cellulose was about 98%. From the X‐ray diffraction patterns and 13C‐NMR spectrum, it was found that the chemical cellulose obtained here has cellulose Iβ crystal structure. A new regenerated cellulose fiber was prepared from the chemical cellulose by dry–wet spinning using N‐methylmorpholine‐ N‐oxide (NMMO)/water (87/13 wt %) as solvent. The new regenerated cellulose fiber prepared in this study has a higher ratio of wet‐to‐dry strength (<0.97) than commercially regenerated cellulose fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1634–1643, 2002.  相似文献   

9.
Carbon fiber has many excellent properties. Currently, the precursor fiber of polyacrylonitrile (PAN)‐based carbon fiber is made from solution by wet or dry spinning process that requires expensive solvents and costly solvent recovery. To solve this problem, we developed a melt‐spun process with ionic liquid as the medium of processing. The melt‐spun precursor fiber exhibited partially cyclized structure. The structure and properties of the melt‐spun PAN precursor fiber were analyzed by combination of scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, X‐ray diffraction, thermogravimetry, ultraviolet spectroscopy, flotation technique, sound velocity orientation test, linear density, and tensile strength tests. The results showed that the tensile strength of melt‐spun PAN precursor fiber was fairly high reached up to 7.0 cN/dtex. The reason was the low imperfect morphology and a cyclized structure formed by in situ chemical reaction during melt‐spun process. Due to the existence of partially cyclized structure in the melt‐spun PAN precursor fiber, exothermic process was mitigated and the heat evolved decreased during thermal stabilization stage in comparison with commercial precursor fibers produced by solution‐spun, which could shorten the residence time of thermal stabilization and reduce the cost of final carbon fiber. POLYM. ENG. SCI., 55:2722–2728, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
Abstract

Atmospheric dielectric‐barrier discharge treatments were shown to be a facile and direct means of enhancing the wet‐strength tensile properties of softwood kraft linerboard furnish. The improvements in wet‐tensile strength were shown to vary between 10–190% depending on the charge of cold plasma applied. These benefits were accompanied with a minor increase in dry tensile strength and slight decrease dry tear strength and negligible changes in creep properties. AFM analysis of the treated sheets demonstrated that this treatment results in surface smoothing of the fibers.  相似文献   

11.
Two bifunctional aldehydes (i.e., glyoxal and glutaraldehyde) are used as the crosslinking agents to improve paper wet strength in the presence of fully hydrolyzed poly(vinyl alcohol) (PVA) as a co‐reactant. These bifunctional aldehydes alone improve paper wet strength but diminish its folding endurance. The use of PVA as a co‐reactant not only improves paper wet strength but also increases its dry strength and folding endurance. Glutaraldehyde is able to impart much higher levels of wet strength to the treated paper than glyoxal when a catalyst is present. The wet strength of the treated paper increases as the amount of PVA added is increased, and it also increases as the molecular weight (Mw) of the PVA increases. The data suggest that the reaction between glutaraldehyde and PVA promotes the formation of interfiber crosslinking, thus improving the wet strength without diminishing the flexibility of the treated paper. The use of a catalyst is critical to achieve high levels of durable wet strength of the treated paper. We studied the effects of different Lewis acids as the catalysts for crosslinking of pulp cellulose by glutaraldehyde and found that Zn(NO3)2 is the most effective one. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1673–1680, 2004  相似文献   

12.
Diacetate filaments were heat‐treated (without tension or with tension) under dry‐heat or wet‐heat environment, respectively. The effects of temperature, time, and tension on tensile properties of diacetate fibers after heat treatments were discussed. The results show that diacetate fibers present no obvious improvement on its tensile properties after dry‐heat treatments without tension. It was also found that during dry heat treatments with tension, the increase in tensile properties of fibers mainly depends on temperature and tension. Moreover, being dry‐heat treated with tension instant after wet‐heat treatment without tension, diacetate fibers exhibit a higher improvement on its tensile properties comparing with dry heat method with tension. The shrinking measurement for the fibers indicates different supermolecular structures were developed in the fiber before treatment and after treatment, which leads to the different extent in the improvement of tensile properties for the fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:787–791, 2006  相似文献   

13.
In our previous research, we found that crosslinking paper using poly(carboxylic acid)s with different molecular weight or using the combination of glutaraldehyde and poly(vinyl alcohol) (PVA) significantly improved the wet strength of the paper. In this research, we studied the mechanism of paper wet strength development using crosslinking systems with different molecular weight by measuring scanning electron microscopic (SEM) images, wet strength, folding endurance, wet thickness, water retention, and Z‐direction tensile strength of the treated paper. The paper crosslinked by a high‐molecular weight (MW) poly(carboxylic acid) shows more swelling by water than that crosslinked by a low‐MW polycarboxylic acid in the SEM micrographs even though both treated paper samples have similar wet strength. Thus, the data suggest that high‐MW poly(carboxylic acid)s promote the formation of interfiber crosslinking. Crosslinking paper by glutaraldehyde, a crosslinking agent of small molecular size, improves wet strength and reduces flexibility and swellability of paper because of the formation of intrafiber crosslinking. Combining glutaraldehyde with PVA as a coreactant increases wet strength and also retains flexibility and swellability of the treated paper because of the formation of interfiber crosslinking. The hypothesis that PVA reacts with glutaraldehyde to form a polymeric pentanedialated‐PVA crosslinking system and promotes the formation of interfiber crosslinking on the paper is supported by the data of wet strength, folding endurance, wet thickness, water retention, and Z‐direction tensile strength of the treated paper. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 277–284, 2006  相似文献   

14.
Mechanical characterization of nanofiber mats is an underexplored area in biomaterial engineering. In this study, a chitosan–poly(ethylene oxide) copolymer blend was electrospun and crosslinked with glutaraldehyde (GA) for various time periods. The tensile and compressive mechanical integrity of the nanofibers was analyzed with increasing exposure to vapor crosslinking. Solubility, scanning electron microscopy characterization, Fourier transform infrared, uniaxial tensile tests, and nanoindentation analyses were used to identify these trends. The mechanical studies confirmed that the GA vapor crosslinking increased the stiffness and decreased the ductility of the electrospun mats. Increased exposure time to crosslinking led to changes in the mat surface color and resistance to dissolution. Scanning electron microscopy fiber counts verified that exposure to GA vapor crosslinking increased the average fiber diameter. By the use of vapor phase deposition, mechanical properties continued to change throughout the study. The crosslinking exposure time could be chosen to accommodate in vivo mechanical loading. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Glyoxal and glutaraldehyde behave very differently for improving wet strength of paper. It is found that glyoxal is very efficient for improving temporary wet strength of paper without the presence of a catalyst and exposure to elevated temperatures. When a metal salt, such as Zn(NO3)2, is used as a catalyst and the curing temperature is increased, the durable wet strength of glyoxal‐treated paper increases at the expense of its flexibility, as shown by reduced stretch and folding endurance. Glutaraldehyde is not able to provide any improvement in wet strength to paper, even under high curing temperatures, provided no catalyst is used. With the aid of a metal salt catalyst, glutaraldehyde imparts excellent durable wet strength to paper without significantly sacrificing folding endurance, and the wet strength of glutaraldehyde‐treated paper increases steadily as curing temperature increases. The different behavior of glyoxal and glutaraldehyde may be attributed to their different reactivity toward cellulose. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2539–2547, 2002  相似文献   

16.
Carboxymethyl chitosan (CMCS)/polysulfone (PS) hollow‐fiber composite membranes were prepared through glutaraldehyde (GA) as the crosslinking agent and PS hollow‐fiber ultrafiltration membrane as the support. The permeation and separation characteristics for dehydration of isopropanol were investigated by the pervaporation method. Pure chitosan, carboxymethyl chitosan, and crosslinked carboxymethyl chitosan membranes were characterized by Fourier transform infrared (FT‐IR) spectroscopy and X‐ray diffraction (XRD) to study the crosslinking reaction mechanism and degree of crystallinity, respectively. The effects of feed composition, crosslinking agent, membrane thickness, and feed temperature on membrane performance were investigated. The results show that the crosslinked CMCS/PS hollow‐fiber composite membranes possess high selectivity and promising permeability. The permeation flux and separation factor for isopropanol/water is 38.6 g/m2h and 3238.5, using 87.5 wt % isopropanol concentration at 45°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1959–1965, 2007  相似文献   

17.
In this research, cellulose nanocrystals (CNs) were extracted from corn cobs by 2,2,6,6,‐tetramethylpiperidine‐1‐oxyl radical‐mediated oxidation combined with ultrasonic treatment for the first time. These CNs were then used as a mechanical reinforcement agent and barrier in chitosan‐based bionanocomposite films. Birefringence analyses under crossed polarizers indicated the presence of isolated nanocrystals in suspension, which was later confirmed by TEM analysis. The crystallinity index obtained from X‐ray diffraction was 92.4%. The incorporation of these nanoparticles into a filmogenic matrix of chitosan made it possible to obtain bionanocomposite films with improved properties. The water‐vapor permeability was reduced by 70%, whereas the tensile strength and Young's modulus increased by up to 136 and 224% respectively. The developed films were applied as interleaving of sliced cheese, and the efficiency was assessed by investigation of adhesion between the surfaces and by comparing its properties with two commercial interleaving products (polyethylene (PE), and Greasepel paper (GP)). Concluding, the developed films showed a substantial potential to be exploited as an interleaving film, owing to its excellent mechanical properties, permeability, hydrophobicity, and low surface adhesion compared to pure chitosan, PE, and GP films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43033.  相似文献   

18.
In this study, freezing was used to separate a solute (polymer) and solvent (deionized water). The polymer in the ice crystals was then crosslinked with solvents, and this diminished the linear pores to form a porous structure. Gelatin and chitosan were blended and frozen, after which crosslinking agents were added, and the whole was frozen again and then freeze‐dried to form chitosan/gelatin porous bone scaffolds. Stereomicroscopy, scanning electron microscopy, compressive strength testing, porosity testing, in vitro biocompatibility, and cytotoxicity were used to evaluate the properties of the bone scaffolds. The test results show that both crosslinking agents, glutaraldehyde (GA) and 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, were able to form a porous structure. In addition, the compressive strength increased as a result of the increased crosslinking time. However, the porosity and cell viability were not correlated with the crosslinking times. The optimal porous and interconnected pore structure occurred when the bone scaffolds were crosslinked with GA for 20 min. It was proven that crosslinking the frozen polymers successfully resulted in a division of the linear pores, and this resulted in interconnected multiple pores and a compressively strong structure. The 48‐h cytotoxicity did not affect the cell viability. This study successfully produced chitosan/gelatin porous materials for biomaterials application. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41851.  相似文献   

19.
This study was focused on the improvement of mechanical strength properties of wheat straw‐based paper through modification of wet‐end cationic starch with borax. Borax has been used extensively in many industrial applications for its unique physical and chemical properties. We investigated the strengthening effect of borax‐modified starch (BMS) as wet‐end paper strength additive on the mechanical strength properties especially the tensile strength of wheat straw‐based paper. Hand‐sheets made of typical wheat straw‐based papermaking furnish were investigated. Experimental results showed that BMS substantially increased the strength properties. Tensile index, elongation, tensile energy absorption, and wet tensile index were increased by 17%, 23%, 20%, and 21%, respectively. A short mill trial was also conducted on papermaking machine in which the impact of BMS on wheat straw‐based low grammage paper (<90 gsm) was investigated. The objective of mill trial was to reduce costly virgin softwood pulp content in wheat straw‐based paper recipe. Mill trial results showed similar trends in strength properties as in case of laboratory studies. Virgin softwood pulp was reduced from 30% to 25% in papermaking furnish. Furthermore, no sheet breaks were reported during trial which often happened due to poor strength of paper web. This study strongly suggests that modification of wet‐end cationic starch with borax holds a tremendous potential as wet‐end strength additive. It can provide significantly improved strength properties, reduction in softwood pulp costs, and better papermaking machine performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
To enhance the color yield and improve the soft handle, hemp fabrics were treated with chitosan of molecular weight 4200 and degree of deacetylation 0.90, and then dyed using Remazol Brillant Blue R with mixed epoxy‐modified silicone oil in different volume ratios. The structural changes in hemp fibers were investigated by means of scanning electron microscope, FTIR, TG, DSC, and XRD. The properties of tensile, bending, dyeing, and color fastness for hemp fabric were also studied. The results showed that when compared with the untreated hemp fiber, the thermal performance of chitosan/silicone oil‐modified hemp fiber changed and the percent residual weight increased in the range of temperature 25–550°C. The crystal grain size decreased and the degree of crystallization increased. For chitosan/silicone oil‐treated hemp fabric, the flexural stiffness and tensile properties degraded. The maximum color yield (K/S value) was obtained when the volume ratio of dyeing liquor to silicone oil was 2 : 1. The color fastnesses to rubbing and wet scrubbing were also improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号