首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Au+ ion implantation with fluences from 1 × 1014 to 3 × 1016 cm−2 into 12CaO · 7Al2O3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 1015 cm−2 exhibited photoluminescence (PL) bands peaking at 3.1 and 2.3 eV at 150 K when excited by He–Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au ion having the electronic configuration of 6s2, judged from their similarities to those reported on Au ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (2.3 × 1021 cm−3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au+ implantation if an appropriate fluence is chosen.  相似文献   

2.
Sapphire single crystals were implanted at room temperature with 180 keV manganese ions to fluences up to 1.8 × 1017 cm−2. The samples were annealed at 1000 °C in oxidizing or reducing atmosphere. Surface damage was observed after implantation of low fluences, the amorphous phase being observed after implantation of 5 × 1016 cm−2, as seen by Rutherford backscattering spectroscopy under channelling conditions. Thermal treatments in air annealed most of the implantation related defects and promoted the redistribution of the manganese ions, in a mixed oxide phase. X-ray diffraction studies revealed the presence of MnAl2O4. On the contrary, similar heat treatments in vacuum led to enhanced out diffusion of Mn while the matrix remained highly damaged. The analysis of laser induced luminescence performed after implantation showed the presence of an intense red emission.  相似文献   

3.
We have synthesized amorphous Fe–Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe+ ions to a fluence of 4.0 × 1017 cm−2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe–Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi2 thin layer.  相似文献   

4.
Electronically conducting polymers are suitable electrode materials for high performance supercapacitors, for their high specific capacitance and high dc conductivity in the charged state. Supercapacitors and batteries are energy storage and conversion systems which satisfies the requirements of high specific power and energy in a complementary way. Ion beam {energy > 1 MeV} irradiation on the polymer is a novel technique to enhance or alter the properties like conductivity, density, chain length and solubility.

Conducting polymer polypyrrole thin films doped with LiClO4 are synthesized electrochemically on ITO coated glass substrate and are irradiated with 160 MeV Ni12+ ions at different fluence 5 × 1010, 5 × 1011 and 3 × 1012 ions cm−2. Dc conductivity measurement of the irradiated films showed 50–60% increase in conductivity which is may be due to increase of carrier concentration in the polymer film as observed in UV–Vis spectroscopy and other effects like cross-linking of polymer chain, bond breaking and creation of defects sites. X-ray diffractogram study shows that the degree of crystallinity of polypyrrole increases in SHI irradiation and is proportionate to ion fluence. The capacitance of the irradiated films is lowered but the capacitance of the supercapacitors with irradiated films showed enhanced stability compared to the devices with unirradiated films while characterized for cycle life up to 10,000 cycles.  相似文献   


5.
Zn+ ion implantation (48 keV) was performed at room temperature up to a fluence of 5 × 1017 cm−2 in -Al2O3 single crystals. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical absorption spectroscopy were utilized to characterize the optical properties, chemical charge states and the microstructure of embedded metallic Zn nanoparticles, respectively. XPS analysis indicated that implanted Zn ions are in the charge state of metallic Zn0. TEM analysis revealed the metallic Zn nanoparticles of 3–10 nm in the as-implanted sample at a fluence of 1 × 1017 cm−2. A selected area electron diffraction (SAD) pattern indicates the random orientation of the Zn nanoparticles. A clear absorption peak appeared gradually in the optical absorption spectra of the as-implanted crystals, due to surface plasma resonance (SPR) of Zn nanoparticles. The wavelength of the absorption peak shifted from 260 nm to 285 nm with the increasing ion fluence, ascribed to the growth of Zn nanoparticles.  相似文献   

6.
We have performed high-dose Fe ion implantation into Si and characterized ion-beam-induced microstructures as well as annealing-induced ones using transmission electron microscopy (TEM) and grazing-incidence X-ray diffraction (GIXRD). Single crystals of Si(1 0 0) substrate were irradiated at 623 K with 120 keV Fe+ ions to a fluence of 4 × 1017 cm−2. The irradiated samples were then annealed in a vacuum furnace at temperatures ranging from 773 K to 1073 K. Cross-sectional TEM observations and GIXRD measurements revealed that a layered structure is formed in the as-implanted specimen with ε-FeSi, β-FeSi2 and damaged Si, as component layers. A continuous β-FeSi2 layer was formed on the topmost layer of the Si substrate after thermal annealing.  相似文献   

7.
Conducting polymer polypyrrole thin films doped with LiCF3SO3, [CH3(CH2)3]4NBF4 and [CH3(CH2)3]4NPF6 have been electrodeposited potentiodynamically on ITO coated glass substrate. The polymer films are irradiated with 160 MeV Ni12+ ions at three different fluences of 5 × 1010, 5 × 1011 and 3 × 1012 ions cm−2. An increase in dc conductivity of polypyrrole films from 100 S/cm to 170 S/cm after irradiation with highest fluence is observed in four-probe measurement. X-ray diffractogram shows increase in the crystallinity of the polypyrrole films upon SHI irradiation, which goes on increasing with the increase in fluence. Absorption intensity increase in the higher wavelength region is observed in the UV–Vis spectra. The SEM studies show that the cauliflower like flaky microstructure of the surface of polypyrrole films turns globular upon SHI irradiation at fluence 5 × 1011 ions cm−2 and becomes smooth and dense at the highest fluence used. The cyclic voltammetry studies exhibit that the redox properties of the polypyrrole films do not change much on SHI irradiation.  相似文献   

8.
Single crystals of z- and x-cut LiNbO3 were irradiated at room temperature and 15 K using He+- and Ar+-ions with energies of 40 and 350 keV and ion fluences between 5 × 1012 and 5 × 1016 cm−2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He+-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO3 in the case of Ar+-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He+- and Ar+-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min−1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO3 are discussed.  相似文献   

9.
Positron annihilation lifetime spectroscopy (PALS) and electron paramagnetic resonance (EPR) have been used in this work to investigate vacancy defects induced in the track region of 132 MeV 12C irradiated silicon carbide. Irradiations have been performed at room temperature at a fluence of 2.5 × 1014 cm−2 in N-low doped 6H–SiC and 3C–SiC monocrystals. Silicon monovacancies have been detected in both polytypes using EPR. Their charge state and concentration have been determined in the track and cascade region of the C+ ions. PALS measurements performed as a function of temperature have shown the presence of VSi–C divacancies in the track region for both polytypes.  相似文献   

10.
Helium irradiation experiments of V–4Ti alloy were conducted in an ECR ion irradiation apparatus by using helium ions with energy of 5 keV. The ion fluence was in the range from 1 × 1017 He/cm2 to 8 × 1017 He/cm2. After the helium ion irradiation, the helium retention was examined by using a technique of thermal desorption spectroscopy (TDS). After the irradiation, the blisters with a size of about 0.1 μm were observed at the surface, and the blister density increased with the ion fluence. Two desorption peaks were observed at approximately 500 and 1200 K in the thermal desorption spectrum. When the ion fluence was low, the retained helium desorbed mainly at the higher temperature regime. As increase of the ion fluence, the desorption at the lower temperature peak increased and the retained amount of helium saturated. The saturated amount was approximately 2.5 × 1017 He/cm2. This value was comparable with those of the other plasma facing materials such as graphite.  相似文献   

11.
The influence of different microstructural processes on the degradation due to radiation embrittlement has studied by positron annihilation and Mössbauer spectroscopy. The materials studied consisted of WWER-440 base (15Kh2MFA) and weld (10KhMFT) RPV steels which were neutron-irradiated at fluence levels of 0.78 × 1024 m−2, 1.47 × 1024 m−2 and 2.54 × 1024 m−2; WWER-1000 base (15Kh2NMFAA) and weld (12Kh2N2MAA) irradiated at a fluence level 1.12 × 1024 m−2; three different model alloys implanted with protons at two dose levels (up to 0.026 dpa), finally the base metal of WWER-1000 (15Kh2NMFAA) was thermally treated with the intention to simulate the P-segregation process. It has been shown possible to correlate the values of parameters obtained by such techniques and data of mechanical testing (ductile-to-brittle transition temperature and upper shelf energy).  相似文献   

12.
Si1−xGex amorphous layers implanted with different doses of carbon (between 5 × 1015 and 2 × 1017 cm−2 and annealed at 700°C and 900°C have been analyzed by Raman and Infrared spectroscopies, electron microscopy and Auger electron spectroscopy. The obtained data show the synthesis of amorphous SiC by implanting at the highest doses. In these cases, recrystallization only occurs at the highest annealing temperature (900°C). The structure of the synthesized SiC strongly depends on the implantation dose, in addition to the anneal temperature. For the highest dose (2 × 1017 cm−2), crystalline β-SiC is formed. Finally, a strong migration of Ge towards the Si substrate is observed from the region where SiC precipitation occurs.  相似文献   

13.
The charge-exchange neutral particles fluxes and energy distribution in IBW heated plasma were investigated in the HT-7 tokamak. The RF frequency was 30 MHz and with an injecting power up to 200 kW. It is observed that the plasma performance is obviously enhanced by IBW heating. The electron temperature was increased by 0.5 keV and the central line averaged electron density was doubled. The neutral particle fluxes of high-energy increased and the bulk ions were heated during IBW heating. The ion temperature was increased by 0.3 keV and the ion heating efficiency of (2–3) eV kW−1 × 1013 cm−3 was achieved. The velocity distribution of charge-exchanged neutral particles appears to be Maxwellian without high-energy tail ions up to the maximum RF power.  相似文献   

14.
Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm2 up to a fluence of 1 × 1017 ions/cm2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm.

IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu+ solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 × 1015 ions/cm2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm2at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size.  相似文献   


15.
The damage distributions induced by ultra low energy ion implantation (5 keV Si+) in both strained-Si/Si0.8Ge0.2 and normal Si are measured using high-resolution RBS/channeling with a depth resolution better than 1 nm. Ion implantation was performed at room temperature over the fluence range from 2 × 1013 to 1 × 1015 ions/cm2. Our HRBS results show that the radiation damage induced in the strained Si is slightly larger than that in the normal Si at fluences from 1 × 1014 to 4 × 1014 ions/cm2 while the amorphous width is almost the same in both strained and normal Si.  相似文献   

16.
Large enhancement in electrical conductivity from <10−10 S cm−1 to 4 × 10−2 S cm−1 was achieved in polycrystalline 12CaO · 7Al2O3 (p-C12A7) thin films by hot Au+ implantation at 600 °C and subsequent ultraviolet (UV) light illumination. Although the as-implanted films were transparent and insulating, the subsequent UV-light illumination induced persistent electronic conduction and coloration. A good correlation was found between the concentration of photo-induced F+-like centers (a cage trapping an electron) and calculated displacements per atom, indicating that the hot Au+ implantation extruded free O2− ions from the cages in the p-C12A7 films by kick-out effects and left electrons in the cages. These results suggest that H ions are formed by the Au+ implantation through the decomposition of preexisting OH ions. Subsequent UV-light illumination produced F+-like centers via photoionization of the H ions, which leads to the electronic conduction and coloration.  相似文献   

17.
Actinide oxides have been used as nuclear fuels in the majority of power reactors working in the world and actinide nitrides are under investigation for the fuels of the future fast neutron fission reactors developed in Forum Generation IV. Radiation damage in actinide oxides UO2, (U0.92Ce0.08)O2, and actinide nitride UN has been characterized after irradiation with swift heavy ions. Fluences up to 3 × 1013 ions/cm2 of heavy ions (Kr 740 Mev, Cd 1 GeV) available at the CIRIL/GANIL facility were used to simulate irradiation in reactors by fission products and by neutrons. The macroscopic effects of irradiation remains very weak compared with those seen in other ceramic oxides irradiated in the same conditions: practically no swelling can be measured and no change in colour can be observed on the irradiated part of a polished face of sintered disks. The point defects in irradiated actinide compounds have been characterized by optical absorption spectroscopy in the UV–Vis–NIR wavelength range. The absorption spectra before and after irradiation are compared, and unexpected stability of optical properties during irradiation is shown. This result confirms the low rate of formation of point defects in actinide oxides and actinide nitrides under irradiation. Actinide oxides and nitrides studied are >40% ionic, and oxidation state of the actinides seems to be stable during irradiation. The small amount of point defects produced by radiation (<1016 cm−2) has been identified from differences between the absorption spectrum before irradiation and the one after irradiation: point defects in oxygen or nitrogen lattices can be observed respectively in oxides and nitrides (F centres), and small amounts of U5+ would be present in all compounds.  相似文献   

18.
In the present study, a 500 Å thin Ag film was deposited by thermal evaporation on 5% HF etched Si(1 1 1) substrate at a chamber pressure of 8×10−6 mbar. The films were irradiated with 100 keV Ar+ ions at room temperature (RT) and at elevated temperatures to a fluence of 1×1016 cm−2 at a flux of 5.55×1012 ions/cm2/s. Surface morphology of the Ar ion-irradiated Ag/Si(1 1 1) system was investigated using scanning electron microscopy (SEM). A percolation network pattern was observed when the film was irradiated at 200°C and 400°C. The fractal dimension of the percolated pattern was higher in the sample irradiated at 400°C compared to the one irradiated at 200°C. The percolation network is still observed in the film thermally annealed at 600°C with and without prior ion irradiation. The fractal dimension of the percolated pattern in the sample annealed at 600°C was lower than in the sample post-annealed (irradiated and then annealed) at 600°C. All these observations are explained in terms of self-diffusion of Ag atoms on the Si(1 1 1) substrate, inter-diffusion of Ag and Si and phase formations in Ag and Si due to Ar ion irradiation.  相似文献   

19.
Xe+ ion implantation with 200 keV was completed at room temperature up to a fluence of 1 × 1017 ion/cm2 in yttria-stabilized zirconia (YSZ) single crystals. Optical absorption and X-ray photoelectron spectroscopy (XPS) were used to characterize the changes of optical properties and charge state in the as-implanted and annealed crystals. A broad absorption band centered at 522 or 497 nm was observed in the optical absorption spectra of samples implanted with fluences of 1 × 1016 ion/cm2 and 1 × 1017 ion/cm2, respectively. These two absorption bands both disappeared due to recombination of color centers after annealing at 250 °C. XPS measurements showed two Gaussian components of O1s spectrum assigned to Zr–O and Y–O, respectively, in YSZ single crystals. After ion implantation, these two peaks merged into a single peak with the increasing etching depth. However, this single peak split into two Gaussian components again after annealing at 250 °C. The concentration of Xe decreased drastically after annealing at 900 °C. And the XPS measurement barely detected the Xe. There was no change in the photoluminescence of YSZ single crystals with a fluence of 1 × 1017 ion/cm2 after annealing up to 900 °C.  相似文献   

20.
The influence of ageing heat treatment on alloy A-286 microstructure and stress corrosion cracking behaviour in simulated Pressurized Water Reactor (PWR) primary water has been investigated. A-286 microstructure was characterized by transmission electron microscopy for ageing heat treatments at 670 °C and 720 °C for durations ranging from 5 h to 100 h. Spherical γ′ phase with mean diameters ranging from 4.6 to 9.6 nm and densities ranging from 8.5 × 1022 m−3 to 2 × 1023 m−3 were measured. Results suggest that both the γ′ phase mean diameter and density quickly saturate with time for ageing heat treatment at 720 °C while the γ′ mean diameter increases significantly up to 100 h for ageing heat treatment at 670 °C. Grain boundary η phase precipitates were systematically observed for ageing heat treatment at 720 °C even for short ageing periods. In contrast, no grain boundary η phase precipitates were observed for ageing heat treatments at 670 °C except after 100 h. Hardening by γ′ precipitation was well described by the dispersed barrier hardening model with a γ′ barrier strength of 0.23. Stress corrosion cracking behaviour of A-286 was investigated by means of constant elongation rate tensile tests at 1.5 × 10−7 s−1 in simulated PWR primary water at 320 °C and 360 °C. In all cases, initiation was transgranular while propagation was intergranular. Grain boundary η phase precipitates were found to have no significant effect on stress corrosion cracking. In contrast, yield strength and to a lesser extent temperature were found to have significant influences on A-286 susceptibility to stress corrosion cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号