首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells.  相似文献   

4.
5.
6.
7.
8.
9.
XPG is a member of the FEN-1 structure-specific endonuclease family. It has 3'-junction cutting activity on bubble substrates and makes the 3'-incision in the human dual incision (excision nuclease) repair system. To investigate the precise role of XPG in nucleotide excision repair, we mutagenized two amino acid residues thought to be involved in DNA binding and catalysis, overproduced the mutant proteins using a baculovirus/insect cell system, and purified and characterized the mutant proteins. The mutation D77A had a modest effect on junction cutting and excision activity and gave rise to uncoupled 5'-incision by mammalian cell-free extracts. The D812A mutation completely abolished the junction cutting and 3'-incision activities of XPG, but the excision nuclease reconstituted with XPG (D812A) carried out normal 5'-incision at the 23rd-24th phosphodiester bonds 5' to a (6-4) photoproduct without producing any 3'-incision. It is concluded that Asp-812 is an active site residue of XPG and that in addition to making the 3'-incision, the physical presence of XPG in the protein-DNA complex is required non-catalytically for subsequent 5'-incision by XPF-ERCC1.  相似文献   

10.
11.
Human replication protein A (RPA) is a three-subunit protein complex (70-, 34-, and 11-kDa subunits) involved in DNA replication, repair, and recombination. Both the 70- (p70) and 34-kDa (p34) subunits interact with Xeroderma pigmentosum group A complementing protein (XPA), a key protein involved in nucleotide excision repair. Our deletion analysis indicated that no particular domain(s) of RPA p70 was essential for its interaction with XPA, whereas 33 amino acids from the C terminus of p34 (p34Delta33C) were necessary for the XPA interaction. Furthermore, mutant RPA lacking the p34 C terminus failed to interact with XPA, suggesting that p34, not p70, is primarily responsible for the interaction of RPA with XPA. RPA stimulated the interaction of XPA with UV-damaged DNA through an RPA-XPA complex on damaged DNA sites because (i) the RPA mutant lacking the C terminus of p34 failed to stimulate an XPA-DNA interaction, and (ii) the ssDNA binding domain of RPA (amino acids 296-458) was necessary for the stimulation of the XPA-DNA interaction. Two separate domains of p70, a single-stranded DNA binding domain and a zinc-finger domain, were necessary for RPA function in nucleotide excision repair. The mutant RPA (RPA:p34Delta33C), which lacks its stimulatory effect on the XPA-DNA interaction, also poorly supported nucleotide excision repair, suggesting that the XPA-RPA interaction on damaged DNA is necessary for DNA repair activity.  相似文献   

12.
The most versatile strategy for repair of damage to DNA, and the main process for repair of UV-induced damage, is nucleotide excision repair. In mammalian cells, the complete mechanism involves more than 20 polypeptides, and defects in many of these are associated with various forms of inherited disorders in humans. The syndrome xeroderma pigmentosum (XP) is associated with mutagen hypersensitivity and increased cancer frequency, and studies of the nucleotide excision repair defect in this disease have been particularly informative. Many of the XP proteins are now being characterized. XPA binds to DNA, with a preference for damaged base pairs. XPC activity is part of a protein complex with single-stranded DNA binding activity. The XPG protein is a nuclease.  相似文献   

13.
14.
DNA repair has been proposed to be an important determinant of cancer cell sensitivity to alkylating agents and cisplatin (DDP). Nucleotide excision repair (NER), which represents one of the most important cellular DNA repair processes able to remove a broad spectrum of DNA lesions, is involved in the recognition and repair of the crosslinks caused by DDP and melphalan (L-PAM). In this study, the mRNA levels of the different genes involved in NER (ERCC1, XPA, XPB, XPC, XPD, XPF) were examined in a panel of eight different human cancer cell lines, together with the overall DNA repair capacity using a host cell reactivation assay of a damaged plasmid. A statistically significant correlation was observed between the relative expression of XPA/XPC (P < 0.05) and ERCC1/XPC (P < 0.05) mRNAs. No correlation was found between the DDP and L-PAM IC50S and the relative mRNA expression of the tested NER genes. When the overall cellular DNA repair capacity was studied, carcinomas seemed to have a higher repair activity than leukaemias; but this repair DNA activity correlated neither with the mRNA expression of the different NER genes nor with DDP and L-PAM IC50S. These data seem to suggest that even if the NER pathway is an important determinant for the cytotoxicity of alkylating agents, as demonstrated by the extremely high sensitivity to alkylating agents in cells lacking this repair system, other factors have to play a role in regulating the cellular sensitivity/resistance to these antitumour drugs.  相似文献   

15.
The p21Cdn1 protein (cip1/waf1/sdi1) plays an important role as an inhibitor of mammalian cell proliferation in response to DNA damage. By interacting with and inhibiting the function of cyclin-Cdk complexes, p21 can block entry into S phase. p21 can also directly inhibit replicative DNA synthesis by binding to the DNA polymerase sliding clamp factor PCNA. When cells are damaged and p21 is induced, DNA nucleotide excision repair (NER) continues, even though this pathway is PCNA-dependent. We investigated features of p21-resistant NER using human cell extracts. A direct end-labelling approach was used to measure the excision of damaged oligonucleotides by NER and no inhibition by p21 was found. By contrast, filling of the approximately 30 nt gaps created by NER could be inhibited by pre-binding p21 to PCNA, but only when gap filling was uncoupled from incision. Binding p21 to PCNA could also inhibit filling of model 30 nt gaps by both purified DNA polymerases delta and epsilon. When p21 was incubated in a cell extract before addition of PCNA, inhibition of repair synthesis was gradually relieved with time. This incubation gives p21 the opportunity to associate with other targets. As p21 blocks association of DNA polymerases with PCNA but does not prevent loading of PCNA onto DNA, repair gap filling can occur rapidly as soon as p21 dissociates from PCNA. A synthetic PCNA-binding p21 peptide was an efficient inhibitor of NER synthesis in cell extracts.  相似文献   

16.
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).  相似文献   

17.
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.  相似文献   

18.
The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号