首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Bluetooth, a wireless technology based on a frequency-hopping physical layer, enables portable devices to form short-range wireless ad hoc networks. Bluetooth hosts are not able to communicate unless they have previously discovered each other through synchronization of their timing and frequency-hopping patterns. Thus, even if all nodes are within proximity of each other, only those nodes which are synchronized with the transmitter can hear the transmission. To support any-to-any communication, nodes must be synchronized so that the pairs of nodes, which can communicate with each other, form a connected graph. Using Bluetooth as an example, we first provide deeper insights into the issue of link establishment in frequency-hopping wireless systems. We then introduce an asynchronous distributed protocol that begins with nodes having no knowledge of their surroundings and terminates with the formation of a connected network topology satisfying all constraints posed by Bluetooth. An attractive protocol feature is its ease in implementation using the communication primitives offered by the Bluetooth Specification.  相似文献   

2.
Bluetooth is a promising short-range wireless communication technology with the characteristics of interference resilience and power efficiency, both desirable for wireless sensor networks. The new Intel Mote sensor devices have Bluetooth technology incorporated as the standard wireless communications interface. When using Bluetooth in applications where multihop routing is required, groups of Bluetooth piconets combine together to form a scatternet. However, most of the existing scatternet formation protocols are designed to facilitate communications between any two pairs of devices, regardless of the actual traffic demand pattern. For wireless sensor network applications with low-duty-cycle traffic patterns, an on-demand scatternet formation protocol can achieve significant power saving by avoiding unnecessary network connectivity. To that end, we introduce an on-demand scatternet and route formation protocol designed specifically for Bluetooth-based wireless sensor networks. Our protocol builds a scatternet on demand, and is able to cope with multiple sources initiating traffic simultaneously. In addition, our energy-aware forwarding nodes selection scheme is based on local information only, and results in more uniform network resource utilization and improved network lifetime. Simulation results show that our protocol can provide scatternet formation with reasonable delay and good load balance, which results in prolonged network lifetime for Bluetooth-based wireless sensor networks.  相似文献   

3.
《Ad hoc Networks》2007,5(3):340-359
In the past five years Bluetooth scatternets were one of the most promising wireless networking technologies for ad hoc networking. In such networks, mobility together with the fact that wireless network nodes may change their communication peers in time, generate permanently changing traffic flows. Thus, forming an optimal scatternet for a given traffic pattern may be not enough, rather a scatternet that best supports traffic flows as they vary in time is required.In this paper we study the optimization of scatternets through the reduction of communication path lengths. After demonstrating analytically that there is a strong relationship between the communication path length on one hand and throughput and power consumption on the other hand, we propose a novel heuristic algorithm suite capable of dynamically adapting the network topology to the existing traffic connections between the scatternet nodes. The periodic adaptation of the scatternet topology to the traffic connections enables the routing algorithms to identify shorter paths between communicating network nodes, thus allowing for more efficient communications. We evaluate our approach through simulations, in the presence of dynamic traffic flows and mobility.  相似文献   

4.
研究异构传感网节能优化拓扑控制优化问题.在异构传感器网络中,每个传感器节点普遍存在初始能量异构,节点在无线通信过程中通信链路异构等异构现象.为了延长网络的生存期,提出一种自适应优化异构无线传感器网络拓扑结构控制算法.算法主要难点技术问题在于对参数E的选择控制问题.该算法基于传输数据跳数和相邻传感器之间通信距离,依据相似三角形几何原理,结合具体应用场景对传感器节点的分簇、成簇等操作进行自适应优化控制.仿真实验表明,改进的算法可以高效控制给定数据采集监测区域所有节点的网络拓扑同时极大地延长了异构传感网的生命周期.  相似文献   

5.
随着无线网络技术的日益成熟及其对小型、微型移动设备的支持,无线移动传感器网络已经逐渐成为一个研究的热点。主要讨论了为无线移动传感器网络设计的一个自适应的体系结构。在该体系结构中,使用了一个区域和核心路由节点相结合的多层结构的方法来增加无线移动网络的信息传输能力、可扩充性和可靠性,并降低网络的能耗,这样就可以适应无线移动网络的高度动态性和移动性。  相似文献   

6.
Gang  Bhaskar   《Ad hoc Networks》2007,5(6):832-843
Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. In this paper, we address the important problem of minimizing average communication latency for the active flows while providing energy-efficiency in wireless sensor networks. As the flows in some wireless sensor network can be long-lived and predictable, it is possible to design schedules for sensor nodes so that nodes can wake up only when it is necessary and asleep during other times. Clearly, the routing layer decision is closely coupled to the wakeup/sleep schedule of the sensor nodes. We formulate a joint scheduling and routing problem with the objective of finding the schedules and routes for current active flows with minimum average latency. By constructing a novel delay graph, the problem can be solved optimally by employing the M node-disjoint paths algorithm under FDMA channel model. We further present extensions of the algorithm to handle dynamic traffic changes and topology changes in wireless sensor networks.  相似文献   

7.
Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.   相似文献   

8.
In this paper, we address the problem of determining an optimal topology for Bluetooth wireless personal area networks (BT-WPANs). In BT-WPANs, multiple communication channels are available, through a frequency hopping technique. The way network nodes are grouped to share the same channel, and which nodes are selected to bridge traffic from a channel to another, has a significant impact on the capacity and throughput of the system, as well as the nodes' battery lifetime. The determination of an optimal topology is thus extremely important. Our approach is based on a min-max formulation of the optimization problem, which produces topologies that minimize the traffic load of the most congested node in the network (thus also minimizing energy consumption) while meeting the traffic requirements and the constraints posed by the BT-WPAN technology. We investigate the performance of the topologies produced by our optimization approach as the system requirements vary, and evaluate the trade-offs existing between system complexity and network efficiency. Results show that a topology optimized for some traffic requirements is remarkably robust to changes in the traffic pattern. Due to the problem complexity, the optimal solution is attained in a centralized manner. Although this implies severe limitations, a centralized solution can be applied whenever a network coordinator is elected, and provides a useful term of comparison for any distributed heuristics.  相似文献   

9.
Sensors and actuators are being increasingly deployed for monitoring and controlling different phenomena and processes in a stand-alone manner or attached to sensor nodes with communication capabilities as part of larger wireless sensor networks (WSN). In addition to the protocols for communication within the WSN, sensor nodes may also provide the gateway functionality towards other networks and/or support communication with other external devices. These devices either represent additional gateways for exposing data and metadata to external networks, or serve as connection points to WSN for instance for the on-site calibration and maintenance. Smartphones as advanced mobile terminals appear particularly suitable for such role. This paper investigates the role a smartphone augmented with WSN gateway functionality can play in WSN with respect to regular dedicated sensor and gateway nodes. As a practical example we show the implementation of a gateway augmented smartphone using a Samsung i8910 phone and a VESNA sensor node connected via Bluetooth. The role of a gateway augmented smartphone is to interface between WSN, which is using a proprietary networking protocol, and the mobile network. The data obtained from WSN can be enriched using smartphone’s embedded sensors before being sent to the remote server. We demonstrate this on an example of geo-tagging the collected data from WSN with the smartphone’s Global Positioning System-based location data.  相似文献   

10.
Due to development of different technologies there has been significant improvement in quality of life. As a result of that, average person’s lifetime duration has been increased. That triggers the problem of independent living of senior citizens. One of the main concerns of the world today is how to enable senior citizens to live independently. As a response to that, systems like eWALL are being developed. eWALL for Active Long Living is a FP7 funded project and it aims to develop system which will enable elderly people to live independently. These systems consist of a large number of sensors which make wireless sensor network. In this paper, different wireless technologies that can be used for communication in systems that are designed to support independent living of elderly people, have been described. The most important focus is at wireless personal area network technologies, like ZigBee, Bluetooth, Bluetooth Low Energy and wireless local area network technologies (e.g., Wi-Fi). There are many obstacles in designing wireless sensor network and most of them concern energy efficiency and interoperability of different technologies that are being used for communication. The main challenge in the current technology world is tremendous increase of use of various wireless devices and technologies, which can cause relatively high interference, so that the wireless devices can stop working. Using cognitive radio in solving the interoperability problem of different wireless technologies in wireless sensor networks has become interesting research topic. In this paper, research on interoperability of different wireless technologies is presented. Using Spectrum Engineering Advanced Monte Carlo Analysis Tool wireless sensors network in home environment was modelled. Interference based on devices layout and activity was investigated. Also, possible improvements that can be made with cognitive radio are investigated and obtained results are given in this paper.  相似文献   

11.
Wireless mesh networking (WMN) is an emerging technology for future broadband wireless access. The proliferation of the mobile computing devices that are equipped with cameras and ad hoc communication mode creates the possibility of exchanging real-time data between mobile users in wireless mesh networks. In this paper, we argue for a ring-based multicast routing topology with support from infrastructure nodes for group communications in WMNs. We study the performance of multicast communication over a ring routing topology when 802.11 with RTS/CTS scheme is used at the MAC layer to enable reliable multicast services in WMNs. We propose an algorithm to enhance the IP multicast routing on the ring topology. We show that when mesh routers on a ring topology support group communications by employing our proposed algorithms, a significant performance enhancement is realized. We analytically compute the end-to-end delay on a ring multicast routing topology. Our results show that the end-to-end delay is reduced about 33 %, and the capacity of multicast network (i.e., maximum group size that the ring can serve with QoS guarantees) is increased about 50 % as compared to conventional schemes. We also use our analytical results to develop heuristic algorithms for constructing an efficient ring-based multicast routing topology with QoS guarantees. The proposed algorithms take into account all possible traffic interference when constructing the multicast ring topology. Thus, the constructed ring topology provides QoS guarantees for the multicast traffic and minimizes the cost of group communications in WMNs.  相似文献   

12.
传统无线传感网一般由大量密集的传感器节点构成,存在节点计算能力、能源和带宽都非常有限的缺点,为了有效节能、延长网络寿命,介绍了基于聚类的K均值算法.该算法通过生成的簇头节点散播到网络的各个区域中,减少了每个区域内通信的能耗和可能会出现的一般节点过早死亡的情况,从而避免了网络对该区城提早失去监控.实验证明,该算法对各节点...  相似文献   

13.
无线传感器网络在海洋环境中最重要的应用是海洋环境的实时监控系统。与其他监测系统相比,海洋实时监测系统具有实时传感器节点,独立性高,精度高的特点。为了提高传感器的监测能力和稳定性,针对海洋环境管理的需求,提出并研究了基于无线传感器网络的海洋环境监测系统,并采用了将ZigBee通信与GPRS和GPRS相结合的技术方法。卫星通信,可以有效地监测海洋污染状况,为海洋环境监测提供一种新的方法和技术,对于后期应用具有重要的参考价值。  相似文献   

14.
短距离低功率无线通信接入系统   总被引:1,自引:0,他引:1  
短距离低功率无线通信接入技术主要集中在物理层和媒体访问控制(MAC)层,包括蓝牙、超宽带(UWB)和Wi-Fi等。蓝牙是链接近距离设备的电缆数据传送的辅助技术;UWB作为窄脉冲无线电技术链接众多电子设备,提供宽带无线接入的灵活性和移动性;Wi-Fi给快速接入设备和WLAN内移动设备提供无线链接,用于较长距离链接,支持一定功率的移动终端接入。短距离低功率无线通信接入系统的标准化进程非常快,辅助标准多,但目前仍以蓝牙和Wi-Fi为主。  相似文献   

15.
基于等概率路由模型的传感器网络负载均衡研究   总被引:1,自引:0,他引:1  
无线传感器网络的能耗效率与流量负载分布密切相关。论文从微观角度研究了无线传感器网络的负载均衡问题。基于等概率路由模型,分析了拓扑传输结构对于感知数据流量的分流作用。根据分析结果,提出了多对一传输模式下任意节点负载密度的定义和算法。分析了节点的负载密度与传感器网络生命期的关系,进一步论证了在多对一的多跳传感器网络中不能实现完全的负载均衡,但是通过设计合理的拓扑结构可以实现准负载均衡。仿真结果说明,从微观角度得到的节点负载密度可以准确描述无线传感器网络的流量负载分布,由此得到的准负载均衡条件也能实现绝大多数节点的负载均衡。  相似文献   

16.
Wireless sensor networks (WSNs) are widely used in large areas of applications; due to advancements in technology, very tiny sensors are readily available, and their usage reduces the cost. The mechanisms designed for wireless networks cannot be implied on networks with tiny nodes due to battery and computational constraints. Understanding the significance of security in WSNs and resource constraintness of tiny WSNs, we propose a node authentication mechanism for nodes in wireless sensor networks to avoid security attacks and establish secure communication between them. In the proposed mechanism, a base station (BS) generates a secret value and random value for each sensor node and stores at the node. The sensor node authenticates using secret value and random number. Random nonce ensures freshness, efficiency, and robustness. The proposed mechanism is lightweight cryptographic, hence requires very less computational, communication, and storage resources. Security analysis of the proposed mechanism could not detect any security attack on it, and the mechanism was found to incur less storage, communication, and computation overheads. Hence, the proposed mechanism is best suitable for wireless sensor networks with tiny nodes.  相似文献   

17.
Di  Nicolas D.   《Ad hoc Networks》2005,3(6):744-761
In wireless sensor networks, one of the main design challenges is to save severely constrained energy resources and obtain long system lifetime. Low cost of sensors enables us to randomly deploy a large number of sensor nodes. Thus, a potential approach to solve lifetime problem arises. That is to let sensors work alternatively by identifying redundant nodes in high-density networks and assigning them an off-duty operation mode that has lower energy consumption than the normal on-duty mode. In a single wireless sensor network, sensors are performing two operations: sensing and communication. Therefore, there might exist two kinds of redundancy in the network. Most of the previous work addressed only one kind of redundancy: sensing or communication alone. Wang et al. [Intergrated Coverage and Connectivity Configuration in Wireless Sensor Networks, in: Proceedings of the First ACM Conference on Embedded Networked Sensor Systems (SenSys 2003), Los Angeles, November 2003] and Zhang and Hou [Maintaining Sensing Coverage and Connectivity in Large Sensor Networks. Technical report UIUCDCS-R-2003-2351, June 2003] first discussed how to combine consideration of coverage and connectivity maintenance in a single activity scheduling. They provided a sufficient condition for safe scheduling integration in those fully covered networks. However, random node deployment often makes initial sensing holes inside the deployed area inevitable even in an extremely high-density network. Therefore, in this paper, we enhance their work to support general wireless sensor networks by proving another conclusion: “the communication range is twice of the sensing range” is the sufficient condition and the tight lower bound to ensure that complete coverage preservation implies connectivity among active nodes if the original network topology (consisting of all the deployed nodes) is connected. Also, we extend the result to k-degree network connectivity and k-degree coverage preservation.  相似文献   

18.
In wireless sensor network environments, a phenomenon of data concentration may occur in one or certain sensor nodes in the process of transmitting sensing data from a source sensor node to a sink node. In this case, the overhead that occurs in the sensor node affects the performance of the entire sensor network. In addition, in the sensor network, excessive sensing data traffic or data loss may occur depending on the variability of the topology of the sensor network. In this paper, visualization for dynamic rerouting is designed and implemented, which visibly provides packet movement routes between sensor nodes and transmitted packet traffic transmission capacity to Geography Markup Language‐based maps having GPS coordinate information. A mechanism for the visualization for dynamic rerouting to detect sensing data overheads and sensor node faults occurring in sensor networks and dynamically rerouting of data is proposed. In addition, information on rerouting route paths from source sensors to sink nodes is visually provided. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Recent technological advances have made it possible to support long lifetime and large volume streaming data transmissions in sensor networks. A major challenge is to maximize the lifetime of battery-powered sensors to support such transmissions. Battery, as the power provider of the sensors, therefore emerges as the key factor for achieving high performance in such applications. Recent study in battery technology reveals that the behavior of battery discharging is more complex than we used to think. Battery powered sensors might waste a huge amount of energy if we do not carefully schedule and budget their discharging. In this paper we study the effect of battery behavior on routing for streaming data transmissions in wireless sensor networks. We first give an on-line computable energy model to mathematically model battery discharge behavior. We show that the model can capture and describe battery behavior accurately at low computational complexity and thus is suitable for on-line battery capacity computation. Based on this battery model we then present a battery-aware routing (BAR) protocol to schedule the routing in wireless sensor networks. The routing protocol is sensitive to the battery status of routing nodes and avoids energy loss. We use the battery data from actual sensors to evaluate the performance of our protocol. The results show that the battery-aware protocol proposed in this paper performs well and can save a significant amount of energy compared to existing routing protocols for streaming data transmissions. Network lifetime is also prolonged with maximum data throughput. As far as we know, this is the first work considering battery-awareness with an accurate analytical on-line computable battery model in sensor network routing. We believe the battery model can be used to explore other energy efficient schemes for wireless networks as well.  相似文献   

20.
李学亮  刘云飞  郭程  顾敏明 《电子科技》2013,26(2):120-122,125
设计了一种基于GPRS的土壤温湿度实时采集系统,给出了一种基于无线传感器网络的环境监测方案。无线传感器网络是由大量随机分布的传感器节点,通过无线通信技术自组织构成的网络,传感器节点具有数据采集处理、无线通信和自动组网能力。文中利用Telosb节点平台设计了传感器节点的硬件结构,并在TinyOS操作系统的基础上,完成了节点的软件设计。该系统可以对目标监测区内多点的温湿度进行实时采集,实现单跳和多跳的数据传输,同时利用GPRS进行高效可靠的远程传输,实现长期动态监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号