首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
In this paper, the Polytope Finite Element Method is employed to model an embedded interface through the body, independent of the background FEM mesh. The elements that are crossed by the embedded interface are decomposed into new polytope elements which have some nodes on the interface line. The interface introduces discontinuity into the primary variable (strong) or into its derivatives (weak). Both strong and weak discontinuities are studied by the proposed method through different numerical examples including fracture problems with traction‐free and cohesive cracks, and heat conduction problems with Dirichlet and Dirichlet–Neumann types of boundary conditions on the embedded interface. For traction‐free cracks which have tip singularity, the nodes near the crack tip are enriched with the singular functions through the eXtended Finite Element Method. The concept of Natural Element Coordinates (NECs) is invoked to drive shape functions for the produced polytopes. A simple treatment is proposed for concave polytopes produced by a kinked interface and also for locating crack tip inside an element prior to using the singularity enrichment. The proposed method pursues some implementational details of eXtended/Generalized Finite Element Methods for interfaces. But here the additional DOFs are constructed on the interface lines in contrast to X/G‐FEM, which attach enriched DOFs to the previously existed nodes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The coupling of Finite Element Method (FEM) with a Boundary Element Method (BEM) is a desirable result that exploits the advantages of each. This paper examines the efficient symmetric coupling of a Symmetric Galerkin Multi‐zone Curved Boundary Element Analysis method with a Finite Element Method for 2‐D elastic problems. Existing collocation based multi‐zone boundary element methods are not symmetric. Thus, when they are coupled with FEM, it is very difficult to achieve symmetry, increasing the computational work to solve the problem. This paper uses a fully Symmetric curved Multi‐zone Galerkin Boundary Element Approach that is coupled to an FEM in a completely symmetric fashion. The symmetry is achieved by symmetrically converting the boundary zones into equivalent ‘macro finite elements’, that are symmetric, so that symmetry in the coupling is retained. This computationally efficient and fast approach can be used to solve a wide range of problems, although only 2‐D elastic problems are shown. Three elasticity problems, including one from the FEM‐BEM literature that explore the efficacy of the approach are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
拆除爆破研究中数值分析方法的比较与选择   总被引:1,自引:0,他引:1  
概述了数值分析法的分类。介绍了平面杆系有限元法、离散元法、数值流形法和不连续变形分析等几种数值分析方法。简单地讨论了平面杆系有限元法的分析步骤以及在拆除爆破中适于解决的问题 ;同时叙述了流形分析中采用的有限覆盖技术。通过分析和比较这几种方法在拆除爆破研究中的应用 ,作者认为 ,当前应用传统的有限元法进行爆破理论研究或拆除爆破模拟存在一些困难 ;离散元法用于拆除爆破理论的研究是可行的 ;不连续变形分析法对于拆除爆破模拟研究是一种具有良好前景的数值方法  相似文献   

4.
概述了数值分析法的分类。介绍了平面杆系有限元法、离散元法、数值流形法和不连续变形分析等几种数值分析方法。简单地讨论了平面杆系有限元法的分析步骤以及在拆除爆破中适于解决的问题 ;同时叙述了流形分析中采用的有限覆盖技术。通过分析和比较这几种方法在拆除爆破研究中的应用 ,作者认为 ,当前应用传统的有限元法进行爆破理论研究或拆除爆破模拟存在一些困难 ;离散元法用于拆除爆破理论的研究是可行的 ;不连续变形分析法对于拆除爆破模拟研究是一种具有良好前景的数值方法  相似文献   

5.
The Newmark method for the numerical integration of second order equations has been extensively used and studied along the past fifty years for structural dynamics and various fields of mechanical engineering. Easy implementation and nice properties of this method and its derivatives for linear problems are appreciated but the main drawback is the treatment of discontinuities. Zienkiewicz proposed an approach using finite element concept in time, which allows a new look at the Newmark method. The idea of this paper is to propose, thanks to this approach, the use of a time partition of the unity method denoted Time Extended Finite Element Method (TX‐FEM) for improved numerical simulations of time discontinuities. An enriched basis of shape functions in time is used to capture with a good accuracy the non‐polynomial part of the solution. This formulation allows a suitable form of the time‐stepping formulae to study stability and energy conservation. The case of an enrichment with the Heaviside function is developed and can be seen as an alternative approach to time discontinuous Galerkin method (T‐DGM), stability and accuracy properties of which can be derived from those of the TX‐FEM. Then Space and Time X‐FEM (STX‐FEM) are combined to obtain a unified space–time discretization. This combined STX‐FEM appears to be a suitable technique for space–time discontinuous problems like dynamic crack propagation or other applications involving moving discontinuities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
基于波函数法的结构振动功率流研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据波函数法(WBM)基于间接Trefftz法且不同于有限元等传统方法、在整个分析域内位移场由精确满足动力学方程函数表示、适用范围由低频扩展至中频等特点,基于该法对结构中频振动功率流问题进行研究。算例中用WBM法分析板结构功率流,并与有限元法比较。用计算结果验证该方法在求解中频振动功率流的有效性与优势。  相似文献   

7.
A new Molecular Dynamics Finite Element Method (MDFEM) with a coupled mechanical‐charge/dipole formulation is proposed. The equilibrium equations of Molecular Dynamics (MD) are embedded exactly within the computationally more favourable Finite Element Method (FEM). This MDFEM can readily implement any force field because the constitutive relations are explicitly uncoupled from the corresponding geometric element topologies. This formal uncoupling allows to differentiate between chemical‐constitutive, geometric and mixed‐mode instabilities. Different force fields, including bond‐order reactive and polarisable fluctuating charge–dipole potentials, are implemented exactly in both explicit and implicit dynamic commercial finite element code. The implicit formulation allows for larger length and time scales and more varied eigenvalue‐based solution strategies. The proposed multi‐physics and multi‐scale compatible MDFEM is shown to be equivalent to MD, as demonstrated by examples of fracture in carbon nanotubes (CNT), and electric charge distribution in graphene, but at a considerably reduced computational cost. The proposed MDFEM is shown to scale linearly, with concurrent continuum FEM multi‐scale couplings allowing for further computational savings. Moreover, novel conformational analyses of pillared graphene structures (PGS) are produced. The proposed model finds potential applications in the parametric topology and numerical design studies of nano‐structures for desired electro‐mechanical properties (e.g. stiffness, toughness and electric field induced vibrational/electron‐emission properties). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This work presents a multi‐domain decomposition integral equation method for the numerical solution of domain dominant problems, for which it is known that the standard Boundary Element Method (BEM) is in disadvantage in comparison with classical domain schemes, such as Finite Difference (FDM) and Finite Element (FEM) methods. As in the recently developed Green Element Method (GEM), in the present approach the original domain is divided into several subdomains. In each of them the corresponding Green's integral representational formula is applied, and on the interfaces of the adjacent subregions the full matching conditions are imposed. In contrast with the GEM, where in each subregion the domain integrals are computed by the use of cell integration, here those integrals are transformed into surface integrals at the contour of each subregion via the Dual Reciprocity Method (DRM), using some of the most efficient radial basis functions known in the literature on mathematical interpolation. In the numerical examples presented in the paper, the contour elements are defined in terms of isoparametric linear elements, for which the analytical integrations of the kernels of the integral representation formula are known. As in the FEM and GEM the obtained global matrix system possesses a banded structure. However in contrast with these two methods (GEM and non‐Hermitian FEM), here one is able to solve the system for the complete internal nodal variables, i.e. the field variables and their derivatives, without any additional interpolation. Finally, some examples showing the accuracy, the efficiency, and the flexibility of the method for the solution of the linear and non‐linear convection–diffusion equation are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A previous research made an integral mathematical contribution for obtaining local function interpolation using neighboring nodal values of the solution function. Subsequent researchers developed mesh‐free methods for Finite Element Method (FEM). This principle can also be used to obtain discrete differential operators on irregular nodes. They may be successfully applied to Finite Difference method, Moving Particle Semi‐implicit (MPS) method and Random Collocation Method (RCM). In this paper, we obtain discrete differential operators on irregular nodes and successfully apply them to solve differential equations using the RCM. We also discuss mathematical aspects of the MPS method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
基于新近提出的一维有限元后处理超收敛算法——单元能量投影(EEP)法,将有限元自适应求解问题转化为对超收敛解答的自适应分段多项式插值问题,一步便可获得最优的有限元网格划分,在该网格上再次进行有限元计算,即可获得满足用户给定的误差限的有限元解答。该法简单实用、快速高效,是一个颇具优势和潜力的自适应方法。文中以二阶常微分方程模型问题为例,对该法的形成思路和实施策略做一介绍,并给出有代表性的数值算例用以展示该法的优良性能和效果。  相似文献   

11.
12.
Fracture of rubber‐like materials is still an open problem. Indeed, it deals with modelling issues (crack growth law, bulk behaviour) and computational issues (robust crack growth in 2D and 3D, incompressibility). The present study focuses on the application of the eXtended Finite Element Method (X‐FEM) to large strain fracture mechanics for plane stress problems. Two important issues are investigated: the choice of the formulation used to solve the problem and the determination of suitable enrichment functions. It is demonstrated that the results obtained with the method are in good agreement with previously published works. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A hybrid numerical method for modelling the evolution of sharp phase interfaces on fixed grids is presented. We focus attention on two‐dimensional solidification problems, where the temperature field evolves according to classical heat conduction in two subdomains separated by a moving freezing front. The enrichment strategies of the eXtended Finite Element Method (X‐FEM) are employed to represent the jump in the temperature gradient that governs the velocity of the phase boundary. A new approach with the X‐FEM is suggested for this class of problems whereby the partition of unity is constructed with C1(Ω) polynomials and enriched with a C0(Ω) function. This approach leads to jumps in temperature gradient occurring only at the phase boundary, and is shown to significantly improve estimates for the front velocity. Temporal derivatives of the temperature field in the vicinity of the phase front are obtained with a projection that employs discontinuous enrichment. In conjunction with a finer finite difference grid, the Level Set method is used to represent the evolution of the phase interface. An iterative procedure is adopted to satisfy the constraints on the temperature field on the phase boundary. The robustness and utility of the method is demonstrated with several benchmark problems of phase transformation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A highly efficient novel Finite Element Boundary Element Method (FEBEM) is proposed for the elasto‐viscoplastic plane‐strain analysis of displacements and stresses in infinite solids. The proposed method takes advantage of both the Finite Element Method (FEM) and the Boundary Element Method (BEM) to achieve higher efficiency and accuracy by using the concept of elastic supports to simulate the effects of unbounded solid mass surrounding the region of interest. The BEM is used to compute the stiffnesses of elastic supports and to estimate the location of the truncation boundary for the finite element model. As compared to the conventional coupled FEBEM, the proposed method has three main computational advantages. Firstly, the symmetrical and highly banded form of the standard finite element stiffness matrix is not disturbed. Secondly, the proposed technique may be implemented simply by using standard codes for elasto‐viscoplastic finite element analysis and elastic boundary element analysis. Thirdly, the yielded zone is approximately located in advance by using the BEM and hence, an unnecessarily large extent of the domain does not have to be discretized for the finite element modelling. The efficiency and accuracy of the proposed method are demonstrated by computing elastic and elasto‐plastic displacements and stresses around ‘deep’ underground openings in rock mass subject to hydrostatic and non‐hydrostatic in situ stresses. Results obtained by the proposed method are compared with ‘exact’ solutions and with those obtained by using a BEM and a coupled FEBEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Fundamental understandings of the pavement-tire friction are vital to improve the design of asphalt pavements. Most of the current research on pavement-tire friction is based on Finite Element Method (FEM), which is relatively complex and difficult to simulate the discontinuity during friction. To overcome the limitations, in this paper, the pavement–tire friction process is investigated using a coupled Multi-scale Discrete Element Method (DEM) – FEM approach. The benefit of such a multiscale method is that DEM has the advantage of simulating the discontinuity behaviour during friction, and FEM is good at simulating the continuum material with low computation consumption. The multi-scale approach provides an innovative and promising approach to simulate the tire-pavement friction behaviour.  相似文献   

16.
Nodal sensitivities as error estimates in computational mechanics   总被引:2,自引:0,他引:2  
Summary This paper proposes the use of special sensitivities, called nodal sensitivities, as error indicators and estimators for numerical analysis in mechanics. Nodal sensitivities are defined as rates of change of response quantities with respect to nodal positions. Direct analytical differentiation is used to obtain the sensitivities, and the infinitesimal perturbations of the nodes are forced to lie along the elements. The idea proposed here can be used in conjunction with general purpose computational methods such as the Finite Element Method (FEM), the Boundary Element Method (BEM) or the Finite Difference Method (FDM); however, the BEM is the method of choice in this paper. The performance of the error indicators is evaluated through two numerical examples in linear elasticity.  相似文献   

17.
We propose a procedure to investigate local stress intensity factors at the scale of the osteons in human Haversian cortical bone. The method combines a specific experimental setting for a three‐point bending millimetric specimen and a numerical method using the eXtended Finite Element Method (X‐FEM). The interface between the experimental setting and the numerical method is ensured through an imaging technique that analyses the light microscopy observations to import the geometrical heterogeneity of the Haversian microstructures, the boundary conditions and appearing crack discontinuities into the numerical model. The local mechanical elastic Young's moduli are measured by nano‐indentation, and the Poisson ratios are determined by an imaging technique of the stress–strain fields. The model is able to access three scales of measurement: the macro scale of the material level (mm), the micro scale inside the Haversian material for stress–strain fields (10–100µm), and the sub‐micro scale for the crack opening profiles (1–10µm ) and fracture parameters (stress intensity factors). The model is applied to several patients at different aging stages. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
在金属淬火过程的数值模拟中,换热系数的正确求解是工件温度场、应力/应变场模拟结果与实际相符合的先决条件.据此研究和分析了换热系数反求法的数学模型,分别采用一维和三维有限元法对该数学模型求解.研究表明:与采用一维有限差分的求解法相比较,计算过程由一维有限元法增加到三维有限元法,与实际情况更为接近;用有限元方法求解的换热系数曲线连续且平滑,结果可靠,且编程量小;用求得的换热系数计算金属淬火试件的中心温度场变化曲线,计算结果与实测数据相吻合.  相似文献   

19.
Many Micro‐Electro‐Mechanical Systems (e.g. RF‐switches, micro‐resonators and micro‐rotors) involve mechanical structures moving in an electrostatic field. For this type of problems, it is required to evaluate accurately the electrostatic forces acting on the devices. Extended Finite Element (X‐FEM) approaches can easily handle moving boundaries and interfaces in the electrostatic domain and seem therefore very suitable to model Micro‐Electro‐Mechanical Systems. In this study we investigate different X‐FEM techniques to solve the electrostatic problem when the electrostatic domain is bounded by a conducting material. Preliminary studies in one‐dimension have shown that one can obtain good results in the computation of electrostatic potential using X‐FEM. In this paper the extension of these preliminary studies to 2D problem is presented. In particular, a new type of enrichment functions is proposed in order to treat accurately Dirichlet boundary conditions on the interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The dynamic behavior of moderately thick FGM plates with geometric discontinuities and arbitrarily curved boundaries is investigated. The Generalized Differential Quadrature Finite Element Method (GDQFEM) is proposed as a numerical approach. The irregular physical domain in Cartesian coordinates is transformed into a regular domain in natural coordinates. Several types of cracked FGM plates are investigated. It appears that GDQFEM is analogous to the well-known Finite Element Method (FEM). With reference to the proposed technique the governing FSDT equations are solved in their strong form and the connections between the elements are imposed with the inter-element compatibility conditions. The results show excellent agreement with other numerical solutions obtained by FEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号