首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
硫正极材料具有比容量高、资源丰富、环境友好等特点,由它与锂金属负极组成锂硫电池是一种极具应用前景的高能量密度的电池体系,在市场上有着极大的发展空间。硫基正极材料作为锂硫电池的重要组成部分,是提高电池性能的关键之一,也是目前的研究重点。然而锂硫电池还存在着一些比较严重的问题,如硫的导电性差、"穿梭效应"和锂晶枝等。本文综述了近几年国内外锂硫电池硫正极材料在单质硫、金属硫化物和有机硫化物三个方面的最新研究进展,并展望了锂硫电池硫正极材料的发展方向。  相似文献   

2.
正最近,在国家自然科学基金委、科技部和中国科学院的支持下,化学所分子纳米结构与纳米技术院重点实验室的研究人员,在新型高比能室温钠-硫电池研究方面又取得新进展。研究结果发表在近期出版的Adv.Mater.(2014,26,1261-1265)上,并被选为当期背封面(Back Cover)论文。钠-硫电池是以单质硫为正极,金属钠为负极,通过硫与钠间的电化学反应实现化学能和电能相互转换的一类金属二次电池。同锂-硫电池类似,钠-硫电池的正极(S)和负极(Na)也具有很高的理论比容量,使其  相似文献   

3.
锂硫电池在电动汽车、无人机等领域受到极大的关注,因其环境友好、材料成本低、理论容量高等特点而被广泛研究,但因硫的导电性能不佳、多硫化物的穿梭效应以及充放电过程中硫的体积变化等阻碍了锂硫电池的商业化。为改善硫不良的导电性及多硫化物的穿梭效应,基于碳材料优异的导电性与氧化物较强的吸附性,采用水合肼在CNT表面还原氯化镍,通过热处理后得到NiO/CNT复合物作为硫的载体,充当电池的正极。物理及电化学表征的结果表明,多孔结构的NiO/CNT比表面积达到48.49 m2·g-1,在电流密度为1C下,NiO/CNT的首圈比容量达到825 mAh·g-1,循环100圈后,比容量保持在617 mAh·g-1且库伦效率在99.3%以上,说明两种材料的复合提高了电池库伦效率和循环性能。  相似文献   

4.
以荷叶茎为原料,通过高温退火处理和KOH活化得到多孔碳,并将其作为硫的载体材料,最终得到C/S正极材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、热重法(TG)、BET分析和喇曼光谱对目标产物进行了表征,研究了C/S正极材料的结构和形貌。将C/S作为锂硫电池正极材料进行电化学测试,其显示了优异的电化学性能。在0.1 C(1 C=1672 mA·g-1)的电流密度时,C/S正极循环200圈后比容量高达847 mA·h·g-1。在0.5 C的电流密度时,C/S正极循环500圈后比容量还能高达690 mA·h·g-1。同时,C/S正极进行倍率性能测试时,其在0.1 C和5 C电流密度下,比容量分别为1067和417 mA·h·g-1。另外,当电流密度恢复到0.1 C,比容量能够恢复到939 mA·h·g-1,表明C/S正极具有良好的倍率性能。所以,制备的C/S正极具有广阔的应用前景。  相似文献   

5.
为了改善锂硫电池的循环性能,将单质硫分别与纳米金属氧化物(V2O5,TiO2)机械混合。用XRD对材料的晶体结构进行了表征。通过循环伏安、交流阻抗和电池性能的对比,对材料的电化学性能进行了分析。结果表明:采用V2O5改性的硫材料,首次放电比容量达844.68 mAh.g–1,样品循环容量衰减明显改善,30次后比容量保持在696.71 mAh.g–1。而TiO2/S复合材料,初始放电比容量为578.21 mAh.g–1,30次循环后比容量为347.71 mAh.g–1。  相似文献   

6.
动力电池作为新能源汽车最重要的部分之一,它的容量直接决定了新能源汽车续航里程的长短。随着新能源汽车的普及,具有高能量密度的锂空气电池成为了目前的研究热点之一。而高性能的空气正极对提升锂空气电池电化学性能至关重要。采用水热法制备氮掺杂石墨烯/二氧化钌(NrGO-RuO_(2))复合正极,通过X射线衍射、X射线光电子能谱、扫描电子显微镜和氮气(N_(2))等温吸-脱附等测试对其晶体结构、元素组成、表面形貌和孔隙结构进行分析,并通过恒流定容充放电、深度放电、电化学交流阻抗图谱等测试分析其对锂空气电池性能的影响。研究表明:与rGO和rGO-RuO_(2)复合正极相比较,NrGO-RuO_(2)复合正极具有较高的循环、深度放电性能和较低的电荷转移阻抗。装配NrGO-RuO_(2)复合正极的锂空气电池,循环次数达到90次,放电深度达到4309 mAh/g,电荷转移阻抗为39.27Ω·cm^(2)。  相似文献   

7.
作为锂空气电池的关键组成部分之一,正极材料性质对锂空气电池的性能起到重要影响。以CNT为碳载体,以α-MnO_2为催化剂,制备CNT/α-MnO_2复合电极作为电池正极。通过恒流定容充放电测试、深度充放电测试、循环伏安测试、电化学阻抗谱测试和扫描电镜测试,研究CNT/α-MnO_2复合正极材料对锂空气电池性能的影响,并获得最优电极材料配比。研究表明:制备的CNT/α-MnO_2复合电极表现出高循环稳定性和高催化活性,显著提升了锂空气电池的性能;当正极材料中CNT与α-MnO_2的质量比为3∶6时,装备CNT/α-MnO_2复合正极的锂空气电池表现出最佳性能,其循环次数高达170次。  相似文献   

8.
正近几年,研究人员尝试设计各式新颖纳米结构的硫正极材料以改进其电池性能,其中,石墨烯由于其独特的二维结构,具有比表面积高、导电性能优异、结构稳定等优点,极具潜力,可作为导电基质应用于锂硫电池体系。中国科学院苏州纳米技术与纳米仿生研究所国际实验室张跃钢团队近期提出一种简易、低成本、可调控的方法,制备出高倍率、超长循环寿命的正极复合材料。该材料将S纳米颗粒包裹于氮掺杂石墨烯片层中,仅与PVDF粘结剂混合,不添加任何碳黑材料,其组装的电池在高放电速率的条件下呈现出极高的比容量。此外,该电池可达到2000次的超长循环寿命,单次循环的容量衰减率仅为0.028%。  相似文献   

9.
高效的储能技术一直都是限制新能源汽车发展的关键因素,而具有超高理论比能量密度(2 500 W·h/kg)的锂硫电池被认为是最有希望的下一代可充电电池。然而,锂硫电池的实际应用受到硫导电性差和多硫化锂的穿梭效应等的限制。为了解决这些问题,提出以硫功能化的过渡金属氮化物材料来提高锂硫电池的电化学性能。对载体二硫氮化钼和吸附物多硫化锂进行建模,并计算载体的态密度;通过计算系统总能量找到了最佳吸附构型,并研究了吸附多硫化锂后复合材料的电荷差分密度和态密度;计算了多硫化锂在吸附载体界面的吉布斯自由能。研究结果表明,二硫氮化钼对多硫化物有较好的吸附强度,在放电过程中表现出较低的吉布斯自由能势垒(0.84 eV),加快了放电反应速率,缩短了电极反应中的多硫化锂的存在时间,从而有利于抑制多硫化锂的溶解和穿梭效应。本研究为过渡金属氮化物以及其他二维材料作为高性能硫阴极材料的设计提供了参考。  相似文献   

10.
为了增加对锂硫电池在循环期间产生的多硫化物的吸附能力,用软模板法在溶液中通过自组装得到了SiO2掺杂介孔碳球,其中极性SiO2可以很好地吸附多硫化物,提高锂硫电池的循环性能。扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征结果表明合成的介孔碳球分散性良好,粒径约为250 nm,具有封闭在内部的孔径约为20 nm的球形孔,封闭的孔结构可以为防止多硫化物流失提供良好的物理屏障。同时氮气吸附和脱附测试结果表明介孔碳球具有很高的比表面积(523 m2/g)和孔体积(0.67 cm3/g),热重分析仪(TGA)数据表明SiO2的质量分数为9.4%,灌硫后硫的质量分数为60%。电化学测试结果表明,在167.5 mA/g的电流密度下,SiO2掺杂介孔碳球的首次循环比容量为1173 mA·h/g,100次循环后比容量仍可达到770 mA·h/g,库仑效率保持在99%。在1675 mA/g的大电流密度下循环了500次后比容量从660 mA·h/g下降到550 mA·h/g,平均每次循环的比容量衰减率仅为0.036%。  相似文献   

11.
Li–S batteries benefit from numerous advantages such as high theoretical capacity, high energy density, and availability of an abundance of sulfur. However, commercialization of Li–S batteries has been impeded because of low loading amount of active materials and poor cycle performance. Herein, a freestanding bilayer carbon–sulfur (FBCS) cathode is reported with superior electrochemical performance at a high sulfur loading level (3 mg cm?2). The top component of the FBCS cathode is composed of interlacing multiwalled carbon nanotubes (MWCNT) and the bottom component is made up of a mixed layer of sulfur imbedded in MWCNT and N‐doped porous carbon (NPC). The MWCNT layer (top part of FBCS cathode) blocks polysulfide migration from the cathode to the anode, and NPC in the bottom part of the FBCS cathode not only provides spacious active sites but also absorbs polysulfide by the nitrogen functional group. The designed novel FBCS cathode delivered a high initial discharge capacity of 964 and 900 mAh g?1 at 0.5 and 1 C, respectively. It also displayed an excellent capacity retention of 83.1% at 0.5 C and 83.4% at 1 C after 300 cycles.  相似文献   

12.
High capacity cathode materials for long‐life rechargeable lithium batteries are urgently needed. Selenium cathode has recently attracted great research attention due to its comparable volumetric capacity to but much better electrical conductivity than widely studied sulfur cathode. However, selenium cathode faces similar issues as sulfur (i.e., shuttling of polyselenides, volumetric expansion) and high performance lithium‐selenium batteries (Li–Se) have not yet been demonstrated at selenium loading >60% in the electrode. In this work, a 3D mesoporous carbon nanoparticles and graphene hierarchical architecture to storage selenium as binder‐free cathode material (Se/MCN‐RGO) for high energy and long life Li–Se batteries is presented. Such architecture not only provides the electrode with excellent electrical and ionic conductivity, but also efficiently suppresses polyselenides shuttling and accommodates volume change during charge/discharge. At selenium content of 62% in the entire cathode, the free‐standing Se/MCN‐RGO exhibits high discharge capacity of 655 mAh g?1 at 0.1 C (97% of theoretical capacity) and long cycling stability with a very small capacity decay of 0.008% per cycle over 1300 cycles at 1 C. The present report demonstrates significant progress in the development of high capacity cathode materials for long‐life Li batteries and flexible energy storage device.  相似文献   

13.
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium‐sulfur (Li‐S) batteries. In this paper, a mesoporous nitrogen‐doped carbon (MPNC)‐sulfur nanocomposite is reported as a novel cathode for advanced Li‐S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verified by X‐ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC‐sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm‐2 with a high sulfur loading (4.2 mg S cm‐2) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm‐2) is demonstrated by using the novel cathode, which is crucial for the practical application of Li‐S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon‐sulfur composite cathodes for Li‐S batteries.  相似文献   

14.
The construction of lithium–sulfur battery cathode materials while simultaneously achieving high areal sulfur-loading, adequate sulfur utilization, efficient polysulfides inhibition, rapid ion diffusion, etc. remains a major challenge. Herein, an internal regulatory strategy to fabricate the unique walnut-like yolk–shell carbon flower@carbon nanospheres is presented (WSYCS) as sulfur hosts. The internal carbon flower, suitable cavity, and external carbon layer effectively disperse the insulate sulfur, accommodate volumetric expansion, and confine polysulfides, thus improving the performance of lithium–sulfur batteries. The finite element simulation method also deduces the enhanced Li+ diffusion and lithium–sulfur reaction kinetics. More importantly, WSYCS2 is grafted onto carbon fiber (CF) by electro-spinning method to form a tandem WSYCS2@CF 3D film as a sulfur host for the free-standing electrode. The corresponding battery exhibits an extremely high areal capacity of 15.5 mAh cm−2 with a sulfur loading of 13.4 mg cm−2. Particularly, the flexible lithium–sulfur pouch cell delivers a high capacity of 8.1 mAh cm−2 and excellent capacity retention of 65% over 800 cycles at a relatively high rate of 1C, corresponding to a calculated energy density of 539 Wh kg−1 and 591 Wh L−1. This work not only provides guidance for tailoring thick carbon/sulfur electrodes but also boosts the development of practical lithium–sulfur batteries.  相似文献   

15.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

16.
Despite their high theoretical specific capacity (1675 mA h g?1), the practical application of Li–S batteries remains limited because the capacity rapidly degrades through severe dissolution of lithium polysulfide and the rate capability is low because of the low electronic conductivity of sulfur. This paper describes novel hierarchical yolk–shell microspheres comprising 1D bamboo‐like N‐doped carbon nanotubes (CNTs) encapsulating Co nanoparticles (Co@BNCNTs YS microspheres) as efficient cathode hosts for Li–S batteries. The microspheres are produced via a two‐step process that involves generation of the microsphere followed by N‐doped CNTs growth. The hierarchical yolk–shell structure enables efficient sulfur loading and mitigates the dissolution of lithium polysulfides, and metallic Co and N doping improves the chemical affinity of the microspheres with sulfur species. Accordingly, a Co@BNCNTs YS microsphere‐based cathode containing 64 wt% sulfur exhibits a high discharge capacity of 700.2 mA h g?1 after 400 cycles at a current density of 1 C (based on the mass of sulfur); this corresponds to a good capacity retention of 76% and capacity fading rate of 0.06% per cycle with an excellent rate performance (752 mA h g?1 at 2.0 C) when applied as cathode hosts for Li–S batteries.  相似文献   

17.
The magnesium–sulfur (Mg-S) battery has attracted considerable attention as a candidate of post-lithium battery systems owing to its high volumetric energy density, safety, and cost effectiveness. However, the known shuttle effect of the soluble polysulfides during charge and discharge leads to a rapid capacity fade and hinders the realization of sulfur-based battery technology. Along with the approaches for cathode design and electrolyte formulation, functionalization of separators can be employed to suppress the polysulfide shuttle. In this study, a glass fiber separator coated with decavanadate-based polyoxometalate (POM) clusters/carbon composite is fabricated by electrospinning technique and its impacts on battery performance and suppression of polysulfide shuttling are investigated. Mg–S batteries with such coated separators and non-corrosive Mg[B(hfip)4]2 electrolyte show significantly enhanced reversible capacity and cycling stability. Functional modification of separator provides a promising approach for improving metal–sulfur batteries.  相似文献   

18.
As demands for electrochemical energy storage continue to rise, alternative electrochemistries to conventional Li-ion batteries become more appealing. Here, an intercalation-conversion hybrid cathode that combines intercalation-type VS2 with conversion-type sulfur chemistry to construct high performance solid-state lithium-sulfur batteries is reported. The layered VS2 nanomaterial features Li-ion transport channels, metallic conductivity, and active capacity contribution, all of which provide an ideal platform for the solid state S/Li2S redox couple to unlock its high gravimetric capacity. The S/VS2/Li3PS4 hybrid cathode composite is prepared by a facile, low-cost, and low-energy mechanical blending process. The S/VS2/Li3PS4|Li3PS4|Li/In (or Li) all-solid-state cell exhibits sulfur utilization of ≈85%, with a Coulombic efficiency of close to 100%. High areal capacity up to 7.8 mA h cm−2 with an active material loading (S/VS2) as high as 15.5 mg cm−2 is achieved.  相似文献   

19.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

20.
Room-temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain-mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain-mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain-mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号