首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under most circumstances, allelic exclusion at the T cell receptor (TCR)beta locus is tightly regulated. Here, we describe a system in which TCRbeta allelic exclusion is overcome as a result of V(D)J recombination in peripheral CD4+ T cells. In TCRbeta chain transgenic mice, tolerogen-mediated chronic peripheral selection against cells expressing the transgene leads to surface expression of endogenous TCRbeta chains. Peripheral CD4+ T cells reexpress the recombination activating genes, RAG1 and RAG2, and contain signal end intermediates indicative of ongoing V(D)J recombination. The rescue from deletion of mature T cells expressing newly generated TCRbeta chains suggests that receptor revision plays a role in the maintenance of peripheral T cell tolerance.  相似文献   

2.
Following the recent realization that TCR beta transgenes can severely inhibit the rearrangement of endogenous Vbeta gene segments in the absence of pre-TCR alpha (pT alpha) chains, we tested whether the pre-TCR has an essential role in TCR beta allelic exclusion under more physiological conditions by analyzing TCR rearrangement in immature thymocytes by single-cell PCR. Our results in pT alpha+ mice are consistent with an ordered model of TCR beta rearrangement beginning on one allele and continuing on the other only when the first attempt is unsuccessful. By contrast, a higher proportion of thymocytes from pT alpha-/- mice exhibited two productive TCR beta alleles. Thus, the pre-TCR-independent suppression of rearrangement by TCR beta transgenes represents a transgene artifact, whereas under physiological conditions the pre-TCR is essential for allelic exclusion.  相似文献   

3.
The pre-T cell receptor (TCR) associates with CD3-transducing subunits and triggers the selective expansion and maturation of T cell precursors expressing a TCR-beta chain. Recent experiments in pre-Talpha chain-deficient mice have suggested that the pre-TCR may not be required for signaling allelic exclusion at the TCR-beta locus. Using CD3-epsilon- and CD3-zeta/eta-deficient mice harboring a productively rearranged TCR-beta transgene, we showed that the CD3-gammadeltaepsilon and CD3-zeta/eta modules, and by inference the pre-TCR/CD3 complex, are each essential for the establishment of allelic exclusion at the endogenous TCR-beta locus. Furthermore, using mutant mice lacking both the CD3-epsilon and CD3-zeta/eta genes, we established that the CD3 gene products are dispensable for the onset of V to (D)J recombination (V, variable; D, diversity; J, joining) at the TCR-beta, TCR-gamma, and TCR-delta loci. Thus, the CD3 components are differentially involved in the sequential events that make the TCR-beta locus first accessible to, and later insulated from, the action of the V(D)J recombinase.  相似文献   

4.
5.
Immature thymocytes express a pre-T cell receptor (pre-TCR) composed of the TCRbeta chain paired with pre-Talpha. Signals from this receptor are essential for passage of thymocytes through a key developmental checkpoint in the thymus. These signals were efficiently delivered in vivo by a truncated form of the murine pre-TCR that lacked all of its extracellular immunoglobulin domains. De novo expression of the truncated pre-TCR or an intact alphabetaTCR was sufficient to activate characteristic TCR signaling pathways in a T cell line. These findings support the view that recognition of an extracellular ligand is not required for pre-TCR function.  相似文献   

6.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

7.
During T cell development the T cell receptor (TCR) beta chain is expressed before the TCR alpha chain. Experiments in TCR beta transgenic severe combined immune deficiency (SCID) mice have shown that the TCR beta protein can be expressed on the cell surface of immature thymocytes in the absence of the TCR alpha chain and that the TCR beta protein controls T cell development with regard to cell number, CD4/CD8 expression and allelic exclusion of the TCR beta chain. Subsequent experiments have shown that on the surface of thymocytes from TCR beta transgenic SCID mice the TCR beta protein can be expressed in a monomeric and dimeric form whereas only the dimeric form was found on the surface of a TCR beta-transfected, immature T cell line. The results presented here show that normal thymocytes from 16-day-old fetuses likewise express only the dimeric form and that the monomeric form on the surface of thymocytes from transgenic mice results from glycosyl phosphatidylinositol linkage. Our results show for the first time that under physiological conditions a TCR beta dimer can be expressed on the cell surface without the TCR alpha chain.  相似文献   

8.
Previously, we described a mAb (1-23) reacting with a novel cell surface antigen expressed on thymocytes at late CD4-CD8- [(double negative (DN)] to early CD4+CD8+ [(double positive (DP)] differentiation stage. Since the expression of this molecule was restricted to immature thymocytes, we designated it as immature thymocyte antigen-1 (IMT-1). In this study, we have investigated the relevance of IMT-1 expression to thymocyte selection using TCR transgenic mice, scid mice or RAG-2-/- mice. The IMT-1+ population in DP thymocytes was decreased in the thymuses of MHC class I-restricted or class II-restricted TCR transgenic mice with a positively selecting MHC background when compared with that of the mice with a non-selecting MHC background. IMT-1+ DP thymocytes were also decreased in TCR transgenic mice in which negative selection occurs. When DP thymocytes in H-Y TCR transgenic mice were stimulated with CD3epsilon mAb in vitro as well as in vivo, the expression of IMT-1 on DP thymocytes was decreased. Furthermore, the expression of IMT-1 on DN thymocytes from RAG-2-/- mice was drastically reduced when CD3epsilon mAb was challenged in vivo. These results suggest that the expression of IMT-1 on DP or DN thymocytes is down-regulated by stimulation through TCR as well as pre-TCR. Taken together, these results show that IMT-1 is a unique surface marker which exquisitely separates pre-selected thymocytes from post-selected thymocytes.  相似文献   

9.
RAG-1 and RAG-2 are developmentally regulated genes that are essential for V(D)J recombination and lymphocyte development. Expression of RAG-1 and RAG-2 by thymocytes is normally limited to cells that have not completed selection. We have previously documented that persistent expression of the recombinase activating genes (RAG) in transgenic mice results in aberrant thymic development, altered lymphatic microanatomy, and a profound immunodeficiency. Here we further document the pathologic changes found in TG.RAG-1,2 mice and examine the role of TCR recombination and positive and negative thymic selection, as well as allelic exclusion, in the etiology of the phenotype. We find that neither selection nor TCR allelic exclusion can be overcome by transgenic expression RAG-1 and RAG-2 under the control of an lck promoter.  相似文献   

10.
There is good evidence for a signaling role played by Ig heavy chain in the developmental transition through the pre-B cell stage. We have previously described signal-capable or signal-incapable mutants of mu heavy chain in which a signaling defect is caused by failure to associate with the Ig alpha/beta heterodimer. To further characterize the role of Ig heavy chain-mediated signaling in vivo, as well as in B cell development and allelic exclusion, we have created transgenic mice in which the B cells express these signal-capable and signal-incapable mutant mu chains. Failure of mu to signal via Ig alpha/beta results in a block in B cell development in mice expressing the signal-incapable mu. A small number of B cells in these animals do escape the developmental block and are expressed in the spleen and the periphery as B220+ transgenic IgM+ cells. These cells respond to LPS by proliferating but show no response to T-independent-specific Ag. In contrast, B cells expressing the signal-capable B cell receptor show a strong signaling response to Ag-specific stimulus. There is no Ig alpha seen in association with signal-deficient IgM. Thus, the B cell receptor complex is not assembled, and no signal can be delivered. Despite the block in developmental signaling, allelic exclusion is complete. There is no detectable coexpression of transgenic IgM and endogenous murine IgM, nor is there rearrangement of the endogenous heavy chain genes. This suggests that differing signaling mechanisms are responsible for the developmental transition and allelic exclusion and thus allows for separate examination of these signaling mechanisms.  相似文献   

11.
12.
We have produced a TCR transgenic mouse that uses a TCR derived from a Th1 clone that is specific for residues 64 to 76 of the d allele of murine hemoglobin presented by I-Ek. Examination of these TCR transgenic mice on an H-2(k/k) background that expressed the nonstimulatory s allele of murine hemoglobin revealed that these mice express many endogenous TCR chains from both alpha and beta loci. We found that this transgenic TCR is also very inefficient at mediating beta selection, thereby showing a direct linkage between beta selection and allelic exclusion of TCR beta. We have also examined these mice on MHC backgrounds that have reduced levels of I-Ek and found that positive selection of cells with high levels of the transgenic TCR depends greatly on the ligand density. Decreasing the selecting ligand density is a means of reducing the number of available selecting niches, and the data reveal that the 3.L2 TCR is used sparingly for positive selection under conditions where the number of niches becomes limiting. The results, therefore, show a way that T cells may get to the periphery with two self-restricted TCRs: one that efficiently mediates positive selection, and another that is inefficient at positive selection with the available niches.  相似文献   

13.
Allelic exclusion is established in development through a feedback mechanism in which the assembled immunoglobulin (Ig) suppresses further V(D)J rearrangement. But Ig expression sometimes fails to prevent further rearrangement. In autoantibody transgenic mice, reactivity of immature B cells with autoantigen can induce receptor editing, in which allelic exclusion is transiently prevented or reversed through nested light chain gene rearrangement, often resulting in altered B cell receptor specificity. To determine the extent of receptor editing in a normal, non-Ig transgenic immune system, we took advantage of the fact that lambda light chain genes usually rearrange after kappa genes. This allowed us to analyze kappa loci in IgMlambda+ cells to determine how frequently in-frame kappa genes fail to suppress lambda gene rearrangements. To do this, we analyzed recombined VkappaJkappa genes inactivated by subsequent recombining sequence (RS) rearrangement. RS rearrangements delete portions of the kappa locus by a V(D)J recombinase-dependent mechanism, suggesting that they play a role in receptor editing. We show that RS recombination is frequently induced by, and inactivates, functionally rearranged kappa loci, as nearly half (47%) of the RS-inactivated VkappaJkappa joins were in-frame. These findings suggest that receptor editing occurs at a surprisingly high frequency in normal B cells.  相似文献   

14.
The development of T cell-mediated autoimmune diseases hinges on the balance between effector and regulatory mechanisms. Using two transgenic mouse lines expressing identical myelin basic protein (MBP)-specific T cell receptor (TCR) genes, we have previously shown that mice bearing exclusively MBP-specific T cells (designated T/R-) spontaneously develop experimental autoimmune encephalomyelitis (EAE), whereas mice bearing MBP-specific T cells as well as other lymphocytes (designated T/R+) did not. Here we demonstrate that T/R- mice can be protected from EAE by the early transfer of total splenocytes or purified CD4(+) T cells from normal donors. Moreover, whereas T/R+ mice crossed with B cell-deficient, gamma/delta T cell-deficient, or major histocompatibility complex class I-deficient mice did not develop EAE spontaneously, T/R+ mice crossed with TCR-alpha and -beta knockout mice developed EAE with the same incidence and severity as T/R- mice. In addition, MBP-specific transgenic mice that lack only endogenous TCR-alpha chains developed EAE with high incidence but reduced severity. Surprisingly, two-thirds of MBP-specific transgenic mice lacking only endogenous TCR-beta chains also developed EAE, suggesting that in T/R+ mice, cells with high protective activity escape TCR-beta chain allelic exclusion. Our study identifies CD4(+) T cells bearing endogenous alpha and beta TCR chains as the lymphocytes that prevent spontaneous EAE in T/R+ mice.  相似文献   

15.
Expression of a single Ag receptor on lymphocytes is maintained via allelic exclusion that generates cells with a clonal receptor repertoire. We show in normal mice and mice expressing functionally rearranged TCR alphabeta transgenes that allelic exclusion at the TCR alpha locus is not operational in immature thymocytes, whereas most mature T cells express a single TCRV alpha-chain. TCRV alpha allelic exclusion in mature thymocytes is regulated through a CD45 tyrosine phosphatase-mediated signal during positive selection. Using functional and genetic systems for selection of immature double TCRV alpha+ thymocytes, we show that peptide-specific ligand recognition provides the signal for allelic exclusion, i.e., mature T cells maintain expression of the ligand-specific TCRV alpha-chain, but lose the nonfunctional receptor. Whereas activation of TCRV beta-chains or CD3epsilon leads to receptor internalization, TCRV alpha ligation promotes retention of the TCR on the cell surface. Although both TCRV alpha- and TCRV beta-chains trigger phosphotyrosine signaling, only the TCRV beta-chain mediates membrane recruitment of the GTPase dynamin. These data indicate that TCRV alpha-directed signals for positive selection control allelic exclusion in T cells, and that developmental signals can select for single receptor usage.  相似文献   

16.
Two new lambda2 chain-transgenic mouse lines were established, both of which showed stable transgene expression during aging of the mice. The line L23, which expressed the transgene at low levels, exhibited normal B cell development, antibody responses and serum Ig levels. Most of the B cells in this mouse line co-expressed the transgenic lambda2 chain together with an endogenous kappa chain, thus showing poor allelic exclusion of endogenous L chains. On the other hand, high expression of the transgenic lambda2 chain in the other mouse line, L2, resulted in nearly complete exclusion of endogenous L chain isotypes. In this line, the lambda2 transgene was already detectable in the cytoplasm of all preB-II cells and some pro/preB-I cells. Its expression during these early phases obviously inhibited development of conventional B2 cells, since the B cells in the periphery of these mice were almost exclusively of the B1 type. This finding was confirmed by adoptive transfer of transgenic bone marrow into lethally irradiated recipients. Very few B cells were present in the spleen of such recipients. The serum IgM levels of L2 mice were close to normal and the majority of these IgM were associated with the transgenic lambda2 chain. Antibody responses to thymus-dependent antigens in such mice were almost exclusively found to be of IgM class. Together, these findings indicate a developmental bias leading to a predominance of B1 cells in the L2 line.  相似文献   

17.
The zeta family includes zeta, eta, and FcepsilonRIgamma (Fcgamma). Dimers of the zeta family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking zeta/eta chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a zeta family dimer can promote T cell maturation, or that in the absence of zeta/eta, Fcgamma serves as a subunit in TCR complexes. To elucidate the role of zeta family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only zeta/eta or Fcgamma. The data reveal that surface complexes that are expressed in the absence of zeta family dimers are capable of transducing signals required for alpha/beta-T cell development. Strikingly, T cells generated in both zeta/eta-/- and zeta/eta-/--Fcgamma-/- mice exhibit a memory phenotype and elaborate interferon gamma. Finally, examination of different T cell populations reveals that zeta/eta and Fcgamma have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of zeta family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations.  相似文献   

18.
The B cell antigen receptor, composed of membrane immunoglobulin (Ig) sheathed by the Igalpha/Igbeta heterodimer plays a critical role in mediating B cell development and responses to antigen. The cytoplasmic tails of Igalpha and Igbeta differ substantially but have been well conserved in evolution. Transfection experiments have revealed that, while these tails share an esssential tyrosine-based activation motif (ITAM), they perform differently in some but not all assays and have been proposed to recruit distinct downstream effectors. We have created transgenic mouse lines expressing chimeric receptors comprising an IgM fused to the cytoplasmic domain of each of the sheath polypeptides. IgM/alpha and IgM/beta chimeras (but not an IgM/beta with mutant ITAM) are each independently sufficient to mediate allelic exclusion, rescue B cell development in gene-targeted Igmu- mice that lack endogenous antigen receptors, as well as signal for B7 upregulation. While the (IgM/alpha) x (IgM/beta) double-transgenic mouse revealed somewhat more efficient allelic exclusion, our data indicate that each of the sheath polypeptides is sufficient to mediate many of the essential functions of the B cell antigen receptor, even if the combination gives optimal activity.  相似文献   

19.
Whether there is one or multiple alphabetaT cell antigen receptor (TCR) recognition modules in a given TCR/CD3 complex is a long-standing controversy in immunology. We show that T cells from transgenic mice that coexpress comparable amounts of two distinct TCRbeta chains incorporate at least two alphabetaTCRs in a single TCR/CD3 complex. Evidence for bispecific alphabetaTCRs was obtained by immunoprecipitation and immunoblotting and confirmed on the surface of living cells both by fluorescence resonance energy transfer and comodulation assays by using antibodies specific for TCRbeta-variable regions. Such (alphabeta)2TCR/CD3 or higher-order complexes were evident in T cells studied either ex vivo or after expansion in vitro. T cell activation is thought by many, but not all, to require TCR cross-linking by its antigen/major histocompatibility complex ligand. The implications of a multivalent (alphabeta)2TCR/CD3 complex stoichiometry for the ordered docking of specific antigen/major histocompatibility complex, CD4, or CD8 coreceptors and additional TCRs are discussed.  相似文献   

20.
Over-expression of human or mouse CD3-epsilon transgenes profoundly disturbs T lymphocyte and natural killer (NK) cell development. One of these transgenic strains, termed tgepsilon26, displays a very early block in T lymphocyte and NK cell development. We showed previously that the absence of early thymocyte progenitors results in an abnormal thymic microenvironment. Due to this thymic defect, T cell development could not be restored by bone marrow (BM) transplantation in adult tgepsilon26 mice but could in fetal tgepsilon26 mice. Here we examine the effect of this abnormal thymic environment on NK cell development. We demonstrate that NK cell maturation in tgepsilon26 mice was reconstituted by BM derived from completely T cell-deficient mice, i.e. RAG-2(-/-) and TCRbeta x delta-/-, but not from wild-type mice. Moreover, tgepsilon26 mice transplanted with BM from partially T cell-deficient mice, i.e. TCRalpha-/-, TCRbeta-/- and TCRdelta-/- mice, did not reconstitute their NK cell compartment. We conclude from these studies that the thymic environment is not required for NK cell development, but that aberrantly educated alphabeta or gammadelta T lymphocytes can influence NK cell ontogeny. Furthermore, high serum levels of tumor necrosis factor (TNF) were detected in the vast majority of tgepsilon26 mice transplanted with BM cells derived from partially T cell-deficient mice, but never from tgepsilon26 mice transplanted with BM cells derived from completely T cell-deficient mice. The high levels of TNF may play an important role in the observed inhibition of NK cell development, since in vivo treatment with an anti-TNF antibody restored NK cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号