首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
The strain hardening behaviors of 32Mn-TCr-1Mo-0.3N austenitic steel were characterized by a simple and effective method. The results show that Hollomon relationship is not applicable during total uniform deformation stage. The flow equation was proposed, Inσ=αexp(lnε/b)+c. The variation rates of strain hardening exponents with true strain at 77 K are obviously higher than that at other temperatures and the value of d^2σ/dε^2 becomes positive during high strain stage. The characters of this variation are principal reasons for increasing elongation at 77 K. The forming of mechanical twin as well as ε-martensite leads to a high elongation at 77 K.  相似文献   

2.
Inconel 625合金高速热变形动态再结晶的临界条件   总被引:2,自引:2,他引:0       下载免费PDF全文
通过等温热压缩试验获得Inconel625合金在变形温度为1000~1200℃,应变速率为1~80S^-1条件下的真应力-应变曲线,利用加工硬化率,结合lnθ-ε曲线上的拐点判据及-δ(1nθ)/δε-ε曲线上的最小值,来研究Inconel625合金动态再结晶的临界条件。结果表明,在该实验条件下,Inconel625合金的lnθε曲线均出现拐点特征,对应的-δ(lnθ)/δε-ε曲线出现最小值,该最小值处对应的应变即为临界应变;临界应变随应变速率的增大和变形温度的降低而增加,并且临界应变和峰值应变之间有一定的关系,即εc=0.69εp;动态再结晶时临界应变的预测模型可以表示为εc=4.41×10^-4Z^0.14261。  相似文献   

3.
耿昊  朱顺新  刘勇 《复合材料学报》2017,34(6):1308-1315
采用放电等离子烧结法(SPS)制备出30%Cr-Cu复合材料,对其致密度、硬度和导电率等相关性能进行测试,并观察分析该复合材料的显微组织。利用Gleeble-1500D型热模拟试验机在变形温度650~950℃、应变速率0.001~10s-1、变形量60%的条件下对30%Cr-Cu复合材料进行热模拟压缩试验。对热压缩试验得到的真应力-应变数据进行拟合、计算和分析,构建该复合材料的本构方程,同时得到材料的加工硬化率θ,利用材料的lnθ-ε曲线出现有拐点和-(lnθ)/ε-ε曲线对应有最小值这一判据,分析该复合材料的动态再结晶临界条件。结果表明:30%Cr-Cu复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随应变速率的增加和温度的降低而升高;该复合材料的lnθ-ε曲线出现拐点,-(lnθ)/ε-ε曲线对应有最小值,该最小值所对应的应变为临界应变εc,且εc随变形温度的升高和应变速率降低而减小,εc与Zener-Hollomon参数Z的函数关系为εc=2.38×10-3 Z0.1396。  相似文献   

4.
3003铝合金动态再结晶实验研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃、应变速率为0.01~10.0s-1的高温等温压缩实验,由真应力-真应变曲线计算应变硬化速率,并采用截线法测量热压缩后平均晶粒尺寸,结果表明:3003铝合金动态再结晶临界应变εc随着Z参数的增大而提高,合金发生动态再结晶的临界条件为:...  相似文献   

5.
陈微  官英平  王振华 《材料导报》2016,30(22):164-168
在变形温度为350~510℃、应变速率为0.001~10s-1条件下,在Gleeble-3500热模拟实验机上对AlMg-Si-Ti合金进行等温热压缩实验,以实验所得数据为基础,结合变形微观组织,确定了Al-Mg-Si-Ti合金热变形时发生动态再结晶的条件,建立了Al-Mg-Si-Ti合金动态再结晶峰值应变模型。采用加工硬化率的方法,利用lnθ-ε曲线的拐点特征和-(lnθ)/ε-ε曲线的极小值判据对再结晶峰值应变与临界应变关系进行了研究。结果表明:AlMg-Si-Ti合金热变形时在变形温度430~510℃、应变速率0.001~0.1s-1发生动态再结晶。Al-Mg-Si-Ti合金发生动态再结晶时的临界应变随应变速率的增大而增加,随变形温度的升高而降低。临界应变与峰值应变满足关系:εc=0.88εp。  相似文献   

6.
The surface tensions (σ) and temperature dependencies (dσ/dT) of several commercial 4-series ferritic stainless steels have been measured using the sessile drop technique on an Al2O3 plate over the temperature range 1789 to 1883 K in an atmosphere of high purity (P O 2 < 10?19 MPa) argon gas. Precise densities of liquid stainless steels have also been obtained using the modified sessile drop method in order to calculate accurate values of the surface tension. The surface tensions of liquid stainless steels decreased markedly with increasing sulphur concentration in the steels. The variation of surface tensions of liquid stainless steels can be described by the following equation σ = 1790 ? 182 ln (1 + 260a S) (mN/m) when only S is considered or σ = 1820 ? 304 ln (1 + 383a O) ? 182ln (1 + 260a S) (mN/m) when both S and O are considered. The equations apply to the following compositional ranges: mass%O = 0.0022–0.0064, mass%S = 0.0008–0.05. The temperature coefficient of the surface tension (dσ/dT) of liquid stainless steel was found to change from negative to positive at a sulphur concentration of about 30 mass ppm in the steel. Nitrogen was found to have little effect on the surface tension of liquid stainless steel.  相似文献   

7.
从 3种不同厚度规格 (36mm ,5 0mm ,80mm )的 9Ni3CrMoV钢板中不同部位及不同方向取样 ,用圆试样测定了拉伸应力 应变曲线 ,计算了该钢的形变强化指数n值 ,研究了取样部位和取样方向对n值的影响 ,结果表明 ,试样取样部位和取样方向对n值的影响不大 ,9Ni3CrMoV钢的n值与屈强比σs/σb 及屈服强度σs 呈明显线性关系。在最大载荷下 ,9Ni3CrMoV钢的真应变εb 低于其形变强化指数n值 ,两者相差约 10 %。  相似文献   

8.
D.T. Read  R.P. Reed 《低温学》1981,21(7):415-417
Austenitic stainless steels have an excellent combination of mechanical and physical properties for load-bearing structures of large superconducting magnets for plasma containment in magnetic fusion experiments. To assess their relative suitability fracture toughness, fatigue crack growth, and tensile properties data for five austenitic steels at 295, 76, and 4 K have been obtained. The steels were AISI 304, 316, 304LN, and 316LN, and an Fe-21cr-12Ni-5Mn alloy with a higher nitrogen content than the other four grades. The two principal findings were the systematic variation of yield strength with nitrogen content and a systematic inverse correlation between fracture toughness and yield strength. Data from previous studies are reviewed which confirm the trends of the present data.  相似文献   

9.
罗锐  程晓农  郑琦  朱晶晶  王皎  刘天  陈光  杨乔 《材料导报》2017,31(18):136-140
在Gleeble-3500热力模拟试验机上对一种新型奥氏体耐热合金(Fe-20Cr-30Ni-0.6Nb-2Al-Mo)进行单道次热压缩实验,结合OM、EBSD及TEM等表征手段,研究了该合金在950~1 100℃和0.01~1s-1热变形参数下的动态再结晶行为,采用回归法确定了合金的热变形激活能和表观应力指数,并以此构建其高温本构模型。实验结果表明,新型奥氏体耐热合金的应力水平随变形温度的升高而降低,随应变速率的增大而升高;动态再结晶行为更易发生在较高变形温度或较低应变速率下。采用lnθ-ε曲线的三次多项式拟合求解临界再结晶拐点的方法,较准确地预测了合金的动态再结晶临界点。此外,归纳出该合金在动态再结晶过程中的形核机制,主要包括应变诱导晶界迁移、晶粒碎化以及亚晶的合并。  相似文献   

10.
Abstract

The influence of nitrogen content on the tensile flow behaviour of type 316 LN austenitic stainless steel has been studied. Nitrogen content in the steel has been varied in the range 0·07 to 0·22 wt-%. Tensile tests were carried out over the temperature range of 300–1123 K at a nominal strain rate of 3×10?3 s?1. The tensile flow behaviour of the steels has been analysed based on the constitutive equation proposed by Voce. The Voce’s parameters of initial stress (σi) and saturation stress (σs) were found to increase linearly with increase in nitrogen content at all the test temperatures. Tensile properties of the steels were predicted from Voce constitutive equation parameters.  相似文献   

11.
The present paper describes some factors exerting an influence on the coaxing effect of austenitic stainless steels. Particularly, the influence of prestrain was investigated in detail. The materials used were austenitic stainless steels, type 304 and 316. Type 304N2 was also used to examine the properties of the stabilized austenitic phase in type 304. Two types of rotating bending fatigue tests, i.e. the conventional constant amplitude tests and stress‐incremental tests, were performed using the specimens subjected to the several tensile‐prestrain levels. Under the constant amplitude tests, the fatigue strengths of type 304 and 316 increased with increasing prestrain. Under the stress‐incremental tests, type 304 showed a remarkable coaxing effect, where the fatigue failure stress significantly increased regardless of the prestrain level. The coaxing effect in the unprestrained specimens was larger than those of the prestrained ones. Type 304N2 showed lower coaxing effect than type 304. In addition, the strain‐induced martensitic transformation did not occur because of the higher stability of austenitic phase in type 304N2. In type 316, the coaxing effect was dependent on the prestrain level, i.e. below 15% prestrain the coaxing effect became smaller with increasing prestrain, whereas above 25% prestrain the coaxing effect reappeared. Based on the tests results, it was considered that the coaxing effect in austenitic stainless steel was due to the mechanisms such as work hardening, strain ageing and strain‐induced martensitic transformation. The contribution of these mechanisms to the coaxing effect was different among type 304, 304N2 and 316.  相似文献   

12.
There is currently a gap in our understanding of mechanisms that contribute to high strength and high plasticity in high strength UFG ferritic steel with nano-size Fe3C carbides in situations that involve com-bination of various strain rates and high temperature.In this regard,we describe the mechanistic basis of obtaining high strength-high plasticity combination in an ultrafine-grained(UFG)(~500±30 nm)ferritic steel with nano-size carbides,which sustained large plastic deformation,exceeding 100%elon-gation at a temperature significantly below 0.5 of the absolute melting point(Tm).To address the missing gap in our knowledge,we conducted a series of experiments involving combination of strain rate and temperature effects in conjunction with electron microscopy and atom probe tomography(APT).Strain rate studies were carried out at strain rates in the range of 0.0017-0.17 s-1 and at different temperatures from 25℃to 600℃.Dynamic recrystallization occurred at 600℃,resulting in a significant decrease in yield and tensile strength.Nevertheless,the UFG ferritic steels had an advantage in tensile strength(σUTS)and elongation-to-failure(εf)at 600℃,especially at strain rate of 0.0017 s-1,with high σUTS of 510 MPa and excellent low temperature(<0.42Tm)superplasticity(εf=110%).These mechanical properties are significantly superior compared to similar type of steels at identical temperature.A mechanistic under-standing of mechanical behavior of UFG ferritic steels is presented by combining the effect of strain rate,temperature,and nano-size carbides.  相似文献   

13.
Abstract

The tensile properties of two C-Mn steels TR1 (Fe-0.135C-0.66Mn) and TR2 (Fe-0.019C-0.18Mn) under different temper rolling conditions were investigated. It was found that the lower yield strength and ultimate tensile strength of steels TR1 and TR2 which were temper rolled at different reductions can be expressed by the following formula, σ(MPa)=σ0+K?eq(%), where σ is the strength after temper rolling; σ0 is the strength without temper rolling; ?eq is the equivalent strain of the temper rolling reduction; K is a constant. The uniform elongation and the total elongation of these two steels which have been temper rolled at different reductions (or equivalent plastic strains) are those of samples without temper rolling subtracted from their equivalent plastic strains. The work hardening exponents of temper rolled samples can be predicted using the tensile curves of the samples which have not been temper rolled. Very good agreement between the experimental results and the calculated data was obtained.  相似文献   

14.
This paper examines the effect of magnetic field on the fracture properties of austenitic stainless steels at liquid helium temperature (4 K). Small punch tests were performed on cold-rolled 304 and 316 austenitic stainless steels. Previously proposed correlation for small punch and elastic-plastic fracture toughness test methods was applied to predict a small punch test-based fracture toughness from equivalent fracture strain.  相似文献   

15.
16.
The influence of Zn on the strain hardening of as-extruded Mg-x Zn(x = 1, 2, 3 and 4 wt%) magnesium alloys was investigated using uniaxial tensile tests at 10~(-3)s~(-1) at room temperature. The strain hardening rate,the strain hardening exponent and the hardening capacity were obtained from true plastic stress-strain curves. There were almost no second phases in the as-extruded Mg-Zn magnesium alloys. Average grain sizes of the four as-extruded alloys were about 17.8 μm. With increasing Zn content from 1 to 4 wt%, the strain hardening rate increased from 2850 MPa to 6810 MPa at(б-б_(0.2)) = 60 MPa, the strain hardening exponent n increased from 0.160 to 0.203, and the hardening capacity, Hc increased from 1.17 to 2.34.The difference in strain hardening response of these Mg-Zn alloys might be mainly caused by weaker basal texture and more solute atoms in the α-Mg matrix with higher Zn content.  相似文献   

17.
研究了超低碳316L、316LN奥氏体不锈钢在常温下的低周疲劳行为及组织结构变化规律。结果表明,材料在循环变形过程中呈现不同程度的硬化、软化,应变幅的增加促进硬化,缩短低周疲劳寿命。透射电镜分析表明,奥氏体内的组织结构的演变过程与循环应力特性曲线的变化规律相呼应。  相似文献   

18.
The present study intends to examine various cyclic plasticity models in fatigue assessment of 304 and 1045 steels based on the critical plane-energy damage approach developed earlier. Cyclic plasticity models of linear hardening, nonlinear, multi-surface, and two-surface were chosen to study fatigue damage and life of materials under proportional and non-proportional loading conditions. The effect of additional hardening induced due to non-proportional loading in 1045 steel and particularly in 304 steel was further evaluated as different constitutive models were employed. In the present study, the plasticity models were calibrated by the equivalent cyclic stress–strain curves. The merits of the models were then investigated to assess materials deformation under proportional and non-proportional loading conditions. Under non-proportional loading, the cyclic plasticity models were found to be highly dependent upon the employed hardening rule as well as the materials properties/coefficients.The stress and strain components calculated through constitutive laws were then used as input parameters to evaluate fatigue damage and assess the fatigue life of materials based on the critical plane-energy approach.The calculated values of stress components based on constitutive laws resulted in a good agreement with those of experimentally obtained under various loading paths of proportional and non-proportional conditions in 1045 steels. In 304 steel, the calculated stress components were however found in good agreement when plasticity models were employed for proportional loading conditions. Under non-proportional loading, the application of the multi-surface plasticity model in conjunction with the fatigue damage approach resulted in more reasonable results as compared with other plasticity models. This can be attributed to the motion of the yield surface in deviatoric stress space in the multi-surface model encountering additional hardening effect through estimated higher stress values under non-proportional loading conditions.Predicted fatigue lives based on the critical plane-energy damage approach showed such range of agreements as ±1.05–±3.0 factors in 1045 and 304 steels as compared with experimental life data when various constitutive plasticity models were employed.  相似文献   

19.
An overview of the X-ray fractography technique, as performed on fatigue crack surfaces of several steels and Al-alloys under different loading conditions, is presented. The plastic zone sizes of fatigue cracks, for plane strain conditions, are measured from the in-depth distribution of residual stresses and X-ray diffraction peak broadening. In addition to the usual monotonic plastic zone size determination methodology, a model for the estimation of the reverse plastic zone size was established in the case of fatigue softening materials. Monotonic and cyclic plastic zone sizes are related to the stress intensity by, respectively, rpm = α (Kmaxys )2 and rpc = α (ΔK/2σ′ys )2. The α-value, in the monotonic plastic zone size equation, increases as the yield strength of the material increases, following the relationship α = 0.196 [σys /(129 + 0.928σys )]2. The α-value versus σys evolution has been understood through the influence of the hardening rate of materials on the plastic zone size. X-ray fractography has been applied to actual failure analyses to predict some aspects of the actual loadings.  相似文献   

20.
进行新型奥氏体耐热钢(CHDG-A)的热压缩实验,研究了在900~1100℃、应变速率为0.01-10 s-1条件下这种钢的热变形特征。结果表明:随着变形温度的提高或应变速率的降低这种钢的流变应力显著降低。基于Arrhenius模型构建了这种材料的本构方程,得到CHDG-A热变形激活能Q为515.618 kJ/mol。微观组织分析结果表明,动态再结晶(DRX)是该材料在实验热变形条件下最主要的软化方式,DRX形核主要通过晶界弓出,变形温度的升高和应变速率降低均有利于再结晶形核。基于真应力-应变曲线求得动态再结晶用Z参数表示的峰值和临界值(σpεpσcεc),并确定了εc/εp,σc/σp的比值分别为0.52和0.98。同时,还基于Avrami方程建立了CHDG-A的DRX动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号