首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F_1, IEC=0), propylsulfonic acid(F_2, IEC= 2.71), and sulfonic acid(F_3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g~(-1) was obtained for the membrane having 3 wt% F_3 nanoparticles and the maximum conductivity of 0.237 S·cm~(-1) was achieved for the membrane having 2 wt% F_3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.  相似文献   

2.
Plasma-enhanced CVD(PECVD) epitaxy at 200℃ was used to deposit heavy doped n-type silicon films. Post-annealing by rapid thermal processing was applied to improve the properties of the epitaxial layer. By analyzing the Raman spectra and the imaginary part of the dielectric constant spectra of the samples, it was found that high-quality heavy-doped epitaxial n-type silicon layer can be obtained by optimizing the parameters of the PECVD depositing process. Reducing the electrodes distance of the PECVD had a great effect on the crystallzation of the epitaxialed n-type silicon films. Sillicon films with high-crystallization were obtained with the electrodes distance of 18 mm. Post-annealing process can improve the crystallization and reduce the resistance of the epitaxial films. In our research, it was found that the sheet resistance(R_□) of the post-annealed films with thickness of about 50 nm has a simple relationship with RPH3/SiH_4(ratio of the flow rate of PH_3 and SiH_4) of the PECVD processing: R_□=-184-125 lg(R_(PH3/SiH4)). In the end, high-quality epitaxial n-type silicon film was obtained with R_□ of 15 Ω/□ and thickness of ~50 nm.  相似文献   

3.
For many current betavoltaics, beta sources and PN junction energy conversion units are separated. The air gap between the two parts could stop part of decay beta particles, which results in inefficient performance of the betavoltaic. By employing 63Ni with an apparent emission activity density of 7.26×107 and 1.81×108 Bq cm?2, betavoltaic performance levels were calculated at a vacuum degree range of 1×105 to 1×10?1 Pa and measured at 1.0×105 and 1.0×104 Pa, respectively. Results show that betavoltaic performance levels improve significantly as the vacuum degree increases. The maximum output power (P max) exhibits the largest change, followed by short-circuit current (I sc), open-circuit voltage (V oc), and fill factor. The vacuum degree effects on I sc, V oc, and P max of the betavoltaic with low apparent activity density 63Ni are more significant than those of the betavoltaic with high apparent activity density 63Ni. Moreover, the improved efficiencies of the measured performances are larger than the calculated efficiencies because of the low ratio of I sc and reverse saturation current (I 0). The values of I 0, ideality factor, and shunt resistance were estimated to modify the equivalent circuit model. The calculation results based on this model are closer to the measurement results. The results of this research can provide a theoretical foundation and experimental reference for the study of vacuum degree effects on betavoltaics of the same kind.  相似文献   

4.
ZnMn2O4 films for resistance random access memory (RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn2O4 films were investigated. The ZnMn2O4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching (BRS) behavior dominated by the space-charge-limited conduction (SCLC) mechanism in the high resistance state (HRS) and the filament conduction mechanism in the low resistance state (LRS), but the ZnMn2O4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel (P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn2O4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest R HRS/R LRS ratio of 104 and the lowest V ON and V OFF of 3.0 V have been observed in Ag/ZnMn2O4/Pt device. Though the Ag/ZnMn2O4/n-Si device also possesses the highest R HRS/R LRS ratio of 104, but the highest values of V ON,V OFF, R HRS and R LRS, as well as the poor endurance and retention characteristics.  相似文献   

5.
TiC x /Cu composites were fabricated by combustion synthesis and hot press technology. Using XRD, SEM, EDS, FESEM analysis methods, the effects of various carbon sources and different Cu contents on the microstructures of TiC x /Cu composites and the size of TiC x particles were investigated. Results showed that TiC x reinforcing particles size increases with decreasing Cu content in Cu-Ti-C reaction system. With carbon nanotubes (carbon black) serving as carbon source, the generated TiC x particles size transits from nanometer to submicron when Cu content corresponding to the reaction system is reduced to 60 vol% (70 vol%); while graphite serves as carbon source, there is no clear limiting concentration. C particles with smaller size, larger specific surface area and better distribution result in finer TiC x particles, which is more beneficial to generating nano-sized TiC x /Cu composites.  相似文献   

6.
A double-layer aluminum consisting of an aluminum core and a shell of SiO2 and polyacrylic acid was synthesized. This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media. TEM, FTIR, XPS, and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum. Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved. Maximum corrosion inhibition efficiency of SiO2 coated aluminum (SiO2@Al) was 95.1% while that of double-layer coated aluminum (PAA/SiO2@Al) was 98.8%. Meanwhile, polyacrylic acid layer improved the agglomeration of aluminum significantly. According to the dispersibility test, the particle size of 50% volume fraction [d(0.5)] of aluminum, SiO2@Al and PAA/SiO2@Al were 42, 53, and 34 μm, respectively.  相似文献   

7.
Nanocrystalline and amorphous LaMg12-type LaMg11Ni + x wt% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter (DSC) connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability (HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time.  相似文献   

8.
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg~2/(cm~4·h~2) to 2.3 mg~2/(cm~4·h~2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].  相似文献   

9.
CuO-doped (Ag0.75Li0.1Na0.1K0.05)NbO3 (ALNKN-xCuO, x = 0–2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure, microstructure, and piezoelectric properties of the ceramics were investigated. The experimental results show that the ALNKN ceramics without doping CuO possess rhombohedral phase along with K2Nb6O16-type phase and metallic silver phase. For all of the CuO-doped ALNKN ceramics, a pure perovskite structure with the orthorhombic phase was obtained by enclosing the samples in a corundum tube. A homogeneous microstructure with the grain size of about 1 μm was formed for the ceramics with 0.5mol% CuO. The grain size increases with increasing amount of CuO. The temperature dependence of dielectric properties indicates that the ferroelectric phase of the ALNKN-xCuO ceramics becomes less stable with the addition of CuO. The ceramics with x = 1mol% exhibit relatively good electrical properties along with a high Curie temperature. These results will provide a helpful guidance to preparing other AN-based ceramics by solid-state reaction method in air atmosphere.  相似文献   

10.
c-axis-oriented SmBa_2Cu_3O_7(SmBCO) films have been deposited on(100)- LaA1O_3(LAO)substrate by metal organic chemical vapor deposition(MOCVD) technique.The effects of deposition temperature(T_(dep)) and total pressure(P_(tot)) on the orientation and microstructure of SmBCO films were investigated.The orientation of SmBCO films transformed from α-axis to c-axis with increasing of T_(dep) from 900 to 1 100℃.At T_(dep)=1 050℃,SmBCO films had c-axis orientation and tetragon surface.At P_(tot)~(dep)=400-800 Pa and T_(dep)=1 050 ℃,totally c-axis-oriented SmBCO films were obtained.The R_(dep) of SmBCO films increased firstly and then decreased with increasing P_(tot).The surface of SmBCO films exhibited tetragon morphology at 1 050 ℃ and400 Pa.Maximum thickness of SmBCO film deposited was 1.2μm at P_(tot)= 600 Pa,and the corresponding R_(dep)was 7.2 μm·h~(-1).  相似文献   

11.
Hexagonal boron nitride ceramic (h-BN) based on the nitridation of B powders was obtained by reaction sintering method. The effects of sintering temperature on the mechanical properties and microstructure of the resultant products were investigated and the reaction mechanism was discussed. Results showed that the reaction between B and N2 occurred vigorously at temperatures ranging from 1 000 °C to 1 300 °C, which resulted in the generation of t-BN. When the temperature exceeded 1 450 °C, transformation from t-BN to h-BN began to occur. As the sintering temperature increased, the spherical particles of t-BN gradually transformed into fine sheet particles of h-BN. These particles subsequently displayed a compact arrangement to achieve a more uniform microstructure, thereby increasing the strength.  相似文献   

12.
In this work, we have studied a new lead-free ceramic of(1-y)Bi_(1-x)Nd_xFeO_(3-y)BiScO_3(0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their phase structure and electrical properties were investigated in detail. The ceramics with 0.05≤x≤0.10 and 0.05≤y≤0.15 belong to an R3 c phase, and the rhombohedral-like and orthorhombic multiphase coexistence is established in the composition range of 0.125≤x≤0.15 and y=0. The electrical properties of the ceramics can be enhanced by modifying x and y values. The highest piezoelectric coefficient(d33~51 p C/N) is obtained in the ceramics with x=0.075 and y=0.125, which is superior to that of a pure BiFeO_3 ceramic. In addition, a lowest dielectric loss(tan δ~0.095%, f=100 k Hz) is shown in the ceramics with x=0.15 and y=0 due to the involvement of low defect concentrations, and the improved thermal stability of piezoelectricity at 20–600oC is possessed in the ceramics. We believe that the ceramics can play a meaningful role in the high-temperature lead-free piezoelectric applications.  相似文献   

13.
Composition tables play a significant role in qualitative spatial reasoning (QSR). At present, a couple of composition tables focusing on various spatial relations have been developed in a qualitative approach. However, the spatial reasoning processes are usually not purely qualitative in everyday life, where probability is one important issue that should be considered. In this paper, the probabilistic compositions of cone-based cardinal direction relations (CDR) are discussed and estimated by making some assumptions. Consequently, the form of composition result turns to be {(R 1,P 1), (R 2,P 2), ..., (R n ,P n )}, where P i is the probability associated with relation R i . Employing the area integral method, the probabilities in each composition case can be computed with the assumption that the target object is uniformly distributed in the corresponding cone regions.  相似文献   

14.
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)_2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)_2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)_2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)_2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)_2.  相似文献   

15.
The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization M_S and coercivity H_c of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO_2 layer/Y_(2.8)Bi_(0.2)Fe_5O_(12) thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range.  相似文献   

16.
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.  相似文献   

17.
YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios were deposited on superalloy Inconel 600 by electrophoretic deposition (EPD) technique, followed by sintering in CH4 atmosphere at 1 100 °C for 2 h and isothermally oxidation at 1000 °C for 50 h. After sintering at 1100 °C for 2 h in CH4 atmosphere, besides ZrC and t-ZrO2 phases, the phase constitutes of Ni:Al mole ratios with 1:3, 1:2, and 1:1 were (Zr, Al)C, AlNi3 and Ni phases, respectively. A remarkable difference in the oxidation behaviors of YSZ/(Ni, Al) composite coatings with different Ni:Al mole ratios was observed. For YSZ(Ni:Al=1:3) coated sample, oxidation at 1000 °C causes decomposition of the (Zr,Al)C solid solution to metallic Al, and then most of the Al is oxidized to Al2O3. For the YSZ(Ni:Al=1:2) coated sample, oxidation at 1000 °C mainly causes decomposition of the AlNi3 phase. For YSZ(Ni:Al=1:1) coated sample, after oxidation at 1000 °C, most of the Ni is oxidized to NiO phase, and tolerated 50 h of oxidation and finally cracked and spalled from the specimen. YSZ(Ni:Al=1:3) and YSZ(Ni:Al=1:2) coated samples show superior oxidation resistance than that of YSZ coating. The different oxidation resistance mechanisms of YSZ/(Ni, Al) composite coatings sintered in CH4 atmosphere were discussed.  相似文献   

18.
Carbon nanoparticles (C-dots) were prepared by refluxing the combustion soots of candles and corn stalk in nitric acid. The synthesized C-dots were characterized. The results showed a sharp increase in oxygen content and a sharp decrease in carbon content after oxidation. The C-dots had -OH and -CO2H groups introduced which made them hydrophilic. However, their difference was also obvious. The C-dots from candle soot had a 10-45 nm broad particle size distribution, and those from corn stalk soot had a 6-18 nm relatively small and narrow size distribution. The C-dots were mainly of sp 2 and sp 3 carbon structure different from the C-dots of diamond-like structure from candle soot. Interestingly, two kinds of C-dots all exhibited unique photoluminescent properties. The obtained C-dots have potential applications in a broad range of areas.  相似文献   

19.
(Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics doped with x wt%CaZrO3 (x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 kV/mm at x=7.5. In virtue of low dielectric loss (tan δ<0.001 5), moderate dielectric constant (εr >1 500) and high breakdown strength (Eb >17.5 kV/mm), the CaZrO3 doped (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramic is a potential candidate material for high power electric applications.  相似文献   

20.
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2, SrN2 and BaN2. The ground state properties of three alkaline earth diazenides were obtained, and these were in good agreement with previous experimental and theoretical data. By using the quasi-harmonic Debye model, the thermodynamic properties including the debye temperature Θ D, thermal expansion coefficient α, and grüneisen parameter γ are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa, respectively. The optical properties including dielectric function ε(?), absorption coefficient α(?), reflectivity coefficient R(?), and refractive index n(?) are also calculated and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号