首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper reports a study of the gaseous emissions from Indian forest fires from 2005 to 2016 and their potential impact on radiative forcing. Initially, forest burned area is quantified using MODIS-MCD45A1 data. Results showed that annual burned area of the study period ranges from 8439 km2 to 25,442 km2 and the maximum forest area is burned during February, March, and April in any year. Gaseous emissions are estimated using emission factors, the mass of fuel available for combustion, combustion factor, and burned area. CO2, CO, and CH4 are the major emissions during forest fires with an annual average of 105 × 106 tonnes, 6 × 106 tonnes, and 3.25 × 105 tonnes, respectively. The average radiative forcing (RF) for CO2, CH4, and N2O is estimated as 1.8 Wm?2, 0.49 Wm?2, and 0.177 Wm?2, respectively. An important finding in the present study is the recurrence of forest fires during the pre-monsoon season.  相似文献   

2.
Law Y  Lant P  Yuan Z 《Water research》2011,45(18):5934-5944
Ammonia-oxidising bacteria (AOB) are a major contributor to nitrous oxide (N2O) emissions during nitrogen transformation. N2O production was observed under both anoxic and aerobic conditions in a lab-scale partial nitritation system operated as a sequencing batch reactor (SBR). The system achieved 55 ± 5% conversion of the 1 g NH4+-N/L contained in a synthetic anaerobic digester liquor to nitrite. The N2O emission factor was 1.0 ± 0.1% of the ammonium converted. pH was shown to have a major impact on the N2O production rate of the AOB enriched culture. In the investigated pH range of 6.0-8.5, the specific N2O production was the lowest between pH 6.0 and 7.0 at a rate of 0.15 ± 0.01 mg N2O-N/h/g VSS, but increased with pH to a maximum of 0.53 ± 0.04 mg N2O-N/h/g VSS at pH 8.0. The same trend was also observed for the specific ammonium oxidation rate (AOR) with the maximum AOR reached at pH 8.0. A linear relationship between the N2O production rate and AOR was observed suggesting that increased ammonium oxidation activity may have promoted N2O production. The N2O production rate was constant across free ammonia (FA) and free nitrous acid (FNA) concentrations of 5-78 mg NH3-N/L and 0.15-4.6 mg HNO2-N/L, respectively, indicating that the observed pH effect was not due to changes in FA or FNA concentrations.  相似文献   

3.
Annual paddy rice-winter wheat rotation constitutes one of the typical cropping systems in southeast China, in which various water regimes are currently practiced during the rice-growing season, including continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding and moisture but without waterlogging (F-D-F-M). We conducted a field experiment in a rice-winter wheat rotation system to gain an insight into the water regime-specific emission factors and background emissions of nitrous oxide (N2O) over the whole annual cycle. While flooding led to an unpronounced N2O emission during the rice-growing season, it incurred substantial N2O emission during the following non-rice season. During the non-rice season, N2O fluxes were, on average, 2.61 and 2.48 mg N2O-N m2 day− 1 for the 250 kg N ha− 1 applied plots preceded by the F and F-D-F water regimes, which are 56% and 49% higher than those by the F-D-F-M water regime, respectively. For the annual rotation system experienced by continuous flooding during the rice-growing season, the relationship between N2O emission and nitrogen input predicted the emission factor and background emission of N2O to be 0.87% and 1.77 kg N2O-N ha− 1, respectively. For the plots experienced by the water regimes of F-D-F and F-D-F-M, the emission factors of N2O averaged 0.97% and 0.85%, with background N2O emissions of 2.00 kg N2O-N ha− 1 and 1.61 kg N2O-N ha− 1 for the annual rotation system, respectively. Annual direct N2O-N emission was estimated to be 98.1 Gg yr− 1 in Chinese rice-based cropping systems in the 1990s, consisting of 32.3 Gg during the rice-growing season and 65.8 Gg during the non-rice season, which accounts for 25-35% of the annual total emission from croplands in China.  相似文献   

4.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

5.
This study is among the first to apply laser‐induced fluorescence to characterize bioaerosols at high time and size resolution in an occupied, common‐use indoor environment. Using an ultraviolet aerodynamic particle sizer, we characterized total and fluorescent biological aerosol particle (FBAP) levels (1–15 μm diameter) in a classroom, sampling with 5‐min resolution continuously during eighteen occupied and eight unoccupied days distributed throughout a one‐year period. A material‐balance model was applied to quantify per‐person FBAP emission rates as a function of particle size. Day‐to‐day and seasonal changes in FBAP number concentration (NF) values in the classroom were small compared to the variability within a day that was attributable to variable levels of occupancy, occupant activities, and the operational state of the ventilation system. Occupancy conditions characteristic of lecture classes were associated with mean NF source strengths of 2 × 106 particles/h/person, and 9 × 104 particles per metabolic g CO2. During transitions between lectures, occupant activity was more vigorous, and estimated mean, per‐person NF emissions were 0.8 × 106 particles per transition. The observed classroom peak in FBAP size at 3–4 μm is similar to the peak in fluorescent and biological aerosols reported from several studies outdoors.  相似文献   

6.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

7.
In most scientific research, interest is given to heterogeneous green household waste collected from landfills. This paper reports a study of the enzymatic dynamics of green household waste separately decomposed in water and soil. The study showed that the highest dehydrogenase activity (800.53 μg of TFP[tri phenyl formazan]/hr/gdw) was noted for the digested pomegranate waste in the soil. The overall hydrolytic activity (0.12 μmol of hydrolysed FDA[fluorescein di acetate]/hr/gdw), and the carbon dioxide (CO2) release were higher (777.20 μg of CO2/hr/gdw) in digestion in water. For tangerine waste digested in water, the CO2 release (918.96 µg of CO2/hr/gdw) and overall hydrolytic activity (0.19 μmol of hydrolysed FDA/hr/gdw) were most pronounced. The values of physicochemical parameters were generally lower in tangerine waste than in pomegranate waste, and lower in water decomposition than in soil decomposition.  相似文献   

8.
The aim of this study was to quantify and compare the environmental impact of the heat of grape stalk pellets with that of wood pellets and other sources, using the Life Cycle Assessment methodology. The study was carried out using the ISO 14040/44 series standard. The inventory analysis and, subsequently, the impact analysis were performed using the software SimaPro8.4.0. The method chosen for this environmental impact assessment was CML-IA baseline. The results show that heat from grape stalk pellets is more environmentally friendly than heat from wood pellets for 7 out of 11 impact categories, including marine aquatic ecotoxicity, which is considered the most important impact category. A global reduction of 1.6 × 104 or 1.14 × 106 or 1.9 × 106 tonne of CO2 eq emissions could be achieved if the global potential production of grape stalk pellets replaced wood pellets or light fuel oil or hard coal briquettes, respectively, contributing to the achievement of the EU’s objectives.  相似文献   

9.
Pan Y  Ye L  Ni BJ  Yuan Z 《Water research》2012,46(15):4832-4840
Acidic pH has previously been found to increase nitrous oxide (N2O) accumulation during heterotrophic denitrification in biological wastewater treatment. However, the mechanism of this phenomenon still needs to be clarified. By using an enriched methanol utilizing denitrifying culture as an example, this paper presents a comprehensive study on the effect of pH (6.0-9.0) on N2O reduction kinetics with N2O as the sole electron acceptor, as well as the effect of pH on N2O accumulation with N2O as an intermediate of nitrate reduction. The pH dependency of nitrate and nitrite reduction was also investigated. The maximum biomass-specific N2O reduction rate is higher than the corresponding maximum nitrate and nitrite reduction rates in the entire pH range studied. However, the maximum biomass-specific N2O reduction rate is much more sensitive to pH variation outside of the optimal range (pH 7.5 to pH 8.0) than the maximum biomass-specific nitrate and nitrite reduction rates. The half-saturation coefficient of the N2O reductase increased from 0.10 mg N2O-N/L to 0.92 mg N2O-N/L as pH increased from pH 6.0 to 9.0. At pH 6.0, approximately 20% and 40% of the denitrified nitrate accumulated as N2O in the presence and absence of methanol (as an exogenous carbon source), respectively. However, at pH 6.5, these fractions decreased to 0% and 30%, respectively. No N2O accumulation occurred at pH 7.0 to 9.0 independent of the availability of methanol. These results suggest that the competition for electrons among different nitrogen oxides reductases likely plays a role in N2O accumulation at low pH conditions.  相似文献   

10.
This paper reports an assessment of the effects of wood waste burning on air quality and the perceived human health in an urban setting. The concentrations of particulates and selected gases were monitored within the vicinity of sawmills in Abeokuta metropolis. The levels of CO, CO2, SO2, NOx, NO2, H2S, CH4 and particulates at distances from sawmill dumps were measured using portable samplers. Additionally, information on sawmill operations and health problems encountered by the exposed population were collected from a community survey. From the data analyses, between 60 and 100% of wood waste generated by sawmills were burned openly, leading to pollutants emission. The mean concentrations of PM0.3–0.5 (32 523–40 284 μg/m3), NO2 (1.0 ppm), SO2 (3.3 ppm), CO (759 ppm) and CO2 (4.9%) were higher than the permissible limits at 0–15 m from the dump sites. Almost all sampled parameters showed positive association (R = 0.90–0.98; p < 0.05) at sample sites. Moreover, distance of sites to the dumps explained 51–93% of the variation in parameters levels. Both respiratory and dermal diseases were frequently experienced by the exposed population. Strict land-use zoning, pollution abatement measures, environmental quality monitoring and waste-to-energy interventions are urgently required in the study area.  相似文献   

11.
The emission rate of carbon dioxide (CO2) depends on many factors but mainly on the activity level (metabolic rate) of occupants. In this study, we examined two other factors that may influence the CO2 emission rate, namely the background CO2 concentration and the indoor temperature. Six male volunteers sat one by one in a 1.7 m3 chamber for 2.5 h and performed light office-type work under five different conditions with two temperature levels (23 vs. 28°C) and three background concentrations of CO2 (800 vs. 1400 vs. 3000 ppm). Background CO2 levels were increased either by dosing CO2 from a cylinder or by reducing the outdoor air supply rate. Physiological responses to warmth, added CO2, and bioeffluents were monitored. The rate of CO2 emission was estimated using a mass-balance equation. The results indicate a higher CO2 emission rate at the higher temperature, at which the subjects were warm, and a lower emission rate in all conditions in which the background CO2 concentration increased. Physiological measurements partially explained the present results but more measurements are needed.  相似文献   

12.
Although many studies have reported the health effects of biomass fuels in developing countries, relatively few have quantitatively characterized emissions from biomass stoves during cooking and heating. The aim of this pilot study was to characterize the emission characteristics of different biomass stoves in four rural houses in Bhutan during heating (metal chimney stove), rice cooking (traditional mud stove), fodder preparation (stone tripod stove), and liquor distillation (traditional mud stove). Three stage measurements (before, during, and after the activity had ceased) were conducted for PM2.5, particle number (PN), CO, and CO2. When stoves were operated, the pollutant concentrations were significantly elevated above background levels, by an average of 40 and 18 times for PM2.5 and CO, respectively. Emission rates (mg/min) ranged from 1.07 × 102 (PM2.5) and 3.50 × 102 (CO) for the stone tripod stove during fodder preparation to 6.20 × 102 (PM2.5) and 2.22 × 103 (CO) for the traditional mud stove during liquor distillation. Usable PN data were only available for one house, during heating using a metal chimney stove, which presented an emission rate of 3.24 × 1013 particles/min. Interventions to control household air pollution in Bhutan, in order to reduce the health risks associated with cooking and heating, are recommended.  相似文献   

13.
Emission of nitrous oxide (N2O) during biological wastewater treatment is of growing concern since N2O is a major stratospheric ozone-depleting substance and an important greenhouse gas. The emission of N2O from a lab-scale granular sequencing batch reactor (SBR) for partial nitrification (PN) treating synthetic wastewater without organic carbon was therefore determined in this study, because PN process is known to produce more N2O than conventional nitrification processes. The average N2O emission rate from the SBR was 0.32 ± 0.17 mg-N L−1 h−1, corresponding to the average emission of N2O of 0.8 ± 0.4% of the incoming nitrogen load (1.5 ± 0.8% of the converted NH4+). Analysis of dynamic concentration profiles during one cycle of the SBR operation demonstrated that N2O concentration in off-gas was the highest just after starting aeration whereas N2O concentration in effluent was gradually increased in the initial 40 min of the aeration period and was decreased thereafter. Isotopomer analysis was conducted to identify the main N2O production pathway in the reactor during one cycle. The hydroxylamine (NH2OH) oxidation pathway accounted for 65% of the total N2O production in the initial phase during one cycle, whereas contribution of the NO2 reduction pathway to N2O production was comparable with that of the NH2OH oxidation pathway in the latter phase. In addition, spatial distributions of bacteria and their activities in single microbial granules taken from the reactor were determined with microsensors and by in situ hybridization. Partial nitrification occurred mainly in the oxic surface layer of the granules and ammonia-oxidizing bacteria were abundant in this layer. N2O production was also found mainly in the oxic surface layer. Based on these results, although N2O was produced mainly via NH2OH oxidation pathway in the autotrophic partial nitrification reactor, N2O production mechanisms were complex and could involve multiple N2O production pathways.  相似文献   

14.
Chronically nitrate-loaded riparian buffer zones show high N2O emissions. Often, a large part of the N2O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N2O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N2O emissions. In this study the N2O emission variability was investigated at different spatial scales. Therefore N2O emissions from three 32 m2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m2, 0.018 m2 and 0.0013 m2) at plots with different levels of N2O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N2O production, but nitrate addition failed to increase total denitrification or net N2O production. N2O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N2O emission rates.  相似文献   

15.
Nitrous oxide (N2O) is a significant greenhouse gas with a global warming potential that is 300 times than that of carbon dioxide. Soil derived N2O emissions usually display a high degree of spatial and temporal variability because of their dependence on soil chemical and physical properties, and climate dependent environmental factors. However, there is little research that incorporates spatial dependence in the estimation of N2O emissions allowing for environmental factors in the same model. This study aims to examine the impact of two environmental factors (soil temperature and soil moisture) on N2O emissions and explore the spatial structure of N2O in the sub-tropical South East Queensland region of Australia. The replicated data on N2O emissions and soil properties were collected at a typical sugarcane land site covering 25 uniform grid points across 3600 m2 between October 2007 and September 2008. A Bayesian conditional autoregressive (CAR) model was used to model spatial dependence. Results showed that soil moisture and soil temperature appeared to have substantially different effects on N2O emissions after taking spatial dependence into account in the four seasons. There was a substantial variation in the spatial distribution of N2O emission in the different seasons. The high N2O emission regions were accompanied by high uncertainty and changed in varying seasons in this study site. Spatial CAR models might be more plausible to elucidate and account for the uncertainty arising from unclear variables and spatial variability in the assessment of N2O emissions in soils, and more accurately identify relationships with key environmental factors and help to reduce the uncertainty of the soil parameters.  相似文献   

16.
This paper presents pollutant concentrations and performance data for code-required mechanical ventilation equipment in 23 low-income apartments at 4 properties constructed or renovated 2013-2017. All apartments had natural gas cooking burners. Occupants pledged to not use windows for ventilation during the study but several did. Measured airflows of range hoods and bathroom exhaust fans were lower than product specifications. Only eight apartments operationally met all ventilation code requirements. Pollutants measured over one week in each apartment included time-resolved fine particulate matter (PM2.5), nitrogen dioxide (NO2), formaldehyde and carbon dioxide (CO2) and time-integrated formaldehyde, NO2 and nitrogen oxides (NOX). Compared to a recent study of California houses with code-compliant ventilation, apartments were smaller, had fewer occupants, higher densities, and higher mechanical ventilation rates. Mean PM2.5, formaldehyde, NO2, and CO2 were 7.7 µg/m3, 14.1, 18.8, and 741 ppm in apartments; these are 4% lower, 25% lower, 165% higher, and 18% higher compared to houses with similar cooking frequency. Four apartments had weekly PM2.5 above the California annual outdoor standard of 12 µg/m3 and also discrete days above the World Health Organization 24-hour guideline of 25 µg/m3. Two apartments had weekly NO2 above the California annual outdoor standard of 30 ppb.  相似文献   

17.
In recent years, developing countries have increased their cassava (Manihot esculenta) production for food security. Cassava contains cyanogen glycosides, mainly as linamarin, which through bio-catalysis, i.e. enzyme hydrolysis, results in hydrogen cyanide (HCN). HCN is released into the environment through numerous ways with subsequent volatilisation. Thus, the HCN released during the period 2002–2013 was estimated between 0.025?×?10?3 to 6.71 ppq (African), 0.012?×?10?3 to 1.01 ppq (Asian) and 0.007?×?10?3 to 0.920?×?10?3 ppq (South American). Furthermore, a decade’s (2014–2024) projection of HCN volatilisation displays increases of 60.5% (Africa), 57.7% (Asia) and 50.5% (South America) when compared with the current production. Furthermore, gas released during cassava plants’ growth, i.e. HCN, NH3, and NO2, was quantified in healthy plants. Varying concentrations of HCN were released. These further indicated the presence of a pseudo-halogenic gas in the environment – a contributor to climate change.  相似文献   

18.
Okabe S  Oshiki M  Takahashi Y  Satoh H 《Water research》2011,45(19):6461-6470
Emission of nitrous oxide (N2O) during biological wastewater treatment is of growing concern. The emission of N2O from a lab-scale two-reactor partial nitrification (PN)-anammox reactor was therefore determined in this study. The average emission of N2O from the PN and anammox process was 4.0 ± 1.5% (9.6 ± 3.2% of the removed nitrogen) and 0.1 ± 0.07% (0.14 ± 0.09% of the removed nitrogen) of the incoming nitrogen load, respectively. Thus, a larger part (97.5%) of N2O was emitted from the PN reactor. The total amount of N2O emission from the PN reactor was correlated to nitrite (NO2) concentration in the PN effluent rather than DO concentration. In addition, further studies were performed to indentify a key biological process that is responsible for N2O emission from the anammox process (i.e., granules). In order to characterize N2O emission from the anammox granules, the in situ N2O production rate was determined by using microelectrodes for the first time, which was related to the spatial organization of microbial community of the granule as determined by fluorescence in situ hybridization (FISH). Microelectrode measurement revealed that the active N2O production zone was located in the inner part of the anammox granule, whereas the active ammonium consumption zone was located above the N2O production zone. Anammox bacteria were present throughout the granule, whereas ammonium-oxidizing bacteria (AOB) were restricted to only the granule surface. In addition, addition of penicillin G that inhibits most of the heterotrophic denitrifiers and AOB completely inhibited N2O production in batch experiments. Based on these results obtained, denitrification by putative heterotrophic denitrifiers present in the inner part of the granule was considered the most probable cause of N2O emission from the anammox reactor (i.e., granules).  相似文献   

19.
Geological and seasonal weather variations govern the geohydrological properties of the Avonlea badlands in Saskatchewan, Canada. Three surface sediments exhibiting distinct lithologic variations were found: a steeply sloped and fissured sandstone; a mildly sloped and popcorn-textured mudrock; and a flat and eroded pediment. The fines content increased from the dry to the wet state, with contents of 17–33 % seen for sandstone, 4–98 % for mudrock, and 21–42 % for pediment. The water adsorption capacity was found to be highest for mudrock (w l = 96 % and w p = 47 %), followed by sandstone (w l = 39 % and w p = 31 %), and then by pediment (w l = 31 % and w p = 23 %). The soil water characteristic curves of sandstone and mudrock showed bimodal distributions with a low air entry value (6 and 9 kPa) pertaining to drainage through cracks and a high air entry value (160 and 92 kPa) associated with flow through the soil matrix. The pediment presented a unimodal soil water characteristic curve with a single matrix air entry value of 4 kPa. The saturated hydraulic conductivities for sandstone, mudrock, and pediment were measured as 8.5 × 10?6, 4.0 × 10?8, and 1.8 × 10?5 m/s, respectively.  相似文献   

20.
Abstract Five classrooms, air-conditioned or naturally ventilated, at five different schools were chosen for comparison of indoor and outdoor air quality. Temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), particulate matter with diameter less than 10 mm (PM10), formaldehyde (HCHO), and total bacteria counts were monitored at indoor and outdoor locations simultaneously. Respirable particulate matter was found to be the worst among parameters measured in this study. The indoor and outdoor average PM10 concentrations exceeded the Hong Kong standards, and the maximum indoor PM10 level was even at 472 μ;g/m3. Air cleaners could be used in classrooms to reduce the high PM10 concentration. Indoor CO2 concentrations often exceeded 1,000 μl/l indicating inadequate ventilation. Lowering the occupancy and increasing breaks between classes could alleviate the high CO2 concentrations. Though the maximum indoor CO2 level reached 5,900 μl/l during class at one of the sites, CO2 concentrations were still at levels that pose no health threats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号