首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article evaluates the influence of independent control factors such as microstructural variation, normal load, sliding velocity, and test duration on dry sliding wear behavior of Ti-6Al-4V alloy at room temperature using a statistical approach. Ti-6Al-4V alloy has been heat treated in a controlled manner in order to produce different microstructural features (i.e., lamellar, bimodal, and equiaxed). Lamellar microstructure is found to be harder than bimodal microstructure followed by equiaxed microstructure in Ti-6Al-4V alloy. Dry sliding wear tests have been carried out using a multiple Tribo tester following a well planned experimental schedule based on Taguchi’s L9 orthogonal array design. Dry sliding wear behavior of Ti-6Al-4V alloy consisting of various microstructural features is related to their hardness values. Results indicated that lamellar microstructure has the lowest sliding wear resistance followed by bimodal and equiaxed microstructure. With the help of signal-to-noise ratios, optimal combination of control factors to minimize the dry sliding wear in Ti-6Al-4V alloy has been determined. Normal load is the most significant control factor influencing the dry sliding wear behavior of investigated Ti-6Al-4V alloy followed by sliding velocity, test duration, and microstructural variation. Normal load has greater static influence of 27.02%, sliding velocity has an influence of 18.07%, test duration has an influence of 12.71%, and microstructural variation has an influence of 10.55% on weight loss of Ti-6Al-4V alloy due to wear having R 2 = 0.89. Two wear mechanisms have been identified: oxidative wear occurs at the lowest sliding velocity and delamination wear occurs at the highest sliding velocity. Optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Rockwell hardness measurements have been used to characterize the microstructures in order to correlate the results obtained.  相似文献   

2.
采用真空感应凝壳熔炼工艺在石墨模中制备Ti-6Al-4V和Ti6Al4V0.5Si两种钛合金。将硅作为一种晶粒细化剂加入到Ti-6Al-4V合金中,考察添加硅对铸态和模锻态Ti-6Al-4V合金组织和性能的影响。铸态合金先在900°C下进行热模锻处理,然后分别进行两种不同的热处理。一种是将模锻样品在1050°C下保温30min,然后水淬以获得细小的层片状组织;另一种是将模锻件在1050°C下保温30min,然后再在800°C下保温30min,以获得粗大的层片状组织。Ti6-Al-4V合金中添加0.5%Si后,铸态合金的晶粒尺寸从627μm减小到337μm,其极限抗拉强度增加约25MPa。具有细小、层片状组织的Ti-6Al-4V0.5Si合金的最大极限抗拉强度为1380MPa,在Hank溶液和NaCl溶液中的腐蚀速度分别为1.35×106和5.78×104mm/a。Ti-6Al-4V合金中添加0.5%Si后,在低滑动速度下的磨损率降低50%,在高滑动速度下的磨损率降低约73%。  相似文献   

3.
The objective of this study is to investigate an innovative infrared (IR) technique to enhance adhesion of electroplated copper (Cu) on Ti-6Al-4V without dichromate dipping. The ultimate goal is to develop a Cu coating process on Ti-6Al-4V without hazardous hexavalent chromium (Cr) solution treatments. Cu coatings of around 50 μm were electroplated on Ti-6Al-4V specimens at a current density of 0.03 A/cm2 in an acidic Cu solution. To improve adhesion of coatings, IR heat treatments were performed on the Cu-coated samples at different temperatures and durations: 860 °C for 600 s and 875 °C for 20–120 s. This process was accomplished in an attempt to replace the use of dichromate dipping before electroplating. For samples heat treated at 860 °C, no bonding existed, even after 600 s. It is believed that solid-state diffusion prevailed at 860 °C and that 600 s was not enough for sufficient diffusion to occur. Adhesion was poor when samples were heat treated at 875 °C for 20 s. Excellent adhesion was observed when the heat treatment holding time was increased to 40 s. For 90 s, the surface appearance of coatings partially changed from Cu-colored to a grayish color. There was no Cu left on the surface after a 120 s heat treatment. From optical microscopic observations on sample cross sections, an interlayer between the Cu and Ti-6Al-4V formed when heat treated at 875 °C for 40 s and longer. The interlayer thickness increased as the holding time increased, until depletion of Cu. The sheet resistivity of coated specimens was on the order of pure Cu for samples heat treated at 875 °C and less than 90 s. During the 875 °C heat treatment, the following occurred: solid-state diffusion of Cu in Ti-6Al-4V, formation of eutectic solutions, dissolution of Cu and Ti-6Al-4V into the liquid phase, and the formation of intermetallic compounds. The lowest eutectic temperature of 875 °C played a key role in this innovative process of Cu coating on Ti-6Al-4V. This paper was presented at the 2nd International Surface Engineering Congress sponsored by ASM International, on September 15–17, 2003, in Indianapolis, Indiana and appears on pp. 403–10 of the Proceedings.  相似文献   

4.
Titania layers were successfully prepared on the surfaces of Ti-6Al-4V alloy via anodic oxidation in H2SO4 or Na2SO4 solutions at room temperature. The titania layers consisted of pure rutile or a mixture of anatase and rutile structures after the Ti-6Al-4V alloy had been anodized in 1.0 M H2SO4 solution at 150 V or 0.5M Na2SO4 solution at 100 or 130 V. Good apatite-forming ability was demonstrated in simulated body fluid. However, surface layers with mainly titanium metallic phase or a pure anatase structure did not possess the ability to induce apatite formation. Anodic oxidation is an effective method to prepare bioactive Ti-6Al-4V alloy that can be used as an artificial bone substitute under load-bearing applications.  相似文献   

5.
The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated. The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstätten α laths and a little acicular in columnar prior β grains with an average grain width of 300 µm, which grow epitaxially from the substrate along the deposition direction (Z). Solution treatment had an important effect on the width, aspect ratio, and volume fraction of primary and secondary α laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary α laths. Globular α phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950°C, 8 h/air cooling (AC)) or with solution treatment (950°C, 1 h/AC) and aging treatment (550°C, above 8 h/AC), respectively. The coarsening and globularization mechanisms of α phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.  相似文献   

6.
研究了不同固溶温度对Ti-6Al-4V合金的显微组织及剪切强度的影响。试验表明,在920~980℃之间固溶并在500℃时效后,随着固溶温度的升高,剪切强度不断提高,从643.5 MPa逐步增加到708.75 MPa,显微组织中的β相不断增加,α相不断减少;当在980℃固溶时,α相基本消失,出现了网篮组织。  相似文献   

7.
针对Ti-6Al-4V合金汽轮机动叶片出现的组织异常,研究了两种热处理工艺对Ti-6Al-4V合金组织与性能的影响,并对锻造加热温度对该材料显微组织的影响进行了探讨。研究结果表明,Ti-6Al-4V合金汽轮机动叶片的组织异常是由于锻造加热温度过高或加热时间过长引起的,Ti-6Al-4V合金锻后采用固溶+时效或直接时效的热处理的方案都能满足产品毛坯性能要求,且锻后直接时效性能更优异。  相似文献   

8.
Filler metal of a low-melting-point (917 °C) Ti-21Ni-14Cu was brazed onto the substrate of Ti-6Al-4V alloy at 960 °C for 2,4, and 8 h to investigate the microstructural evolution and electrochemical characteristics of the brazed metal as a function of the period of brazing time. Optical microscopy, scanning and transmission electron microscopy, and x-ray diffractometry were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that diffusion of copper and nickel from the filler metal into the equiaxed a plus intergranular β structure of Ti-6Al-4V substrate causes the lamellar Widmanstätten structure to form. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the metal brazed at 960 °C for 2 h, but the latter phase decreases with time. Advantage might be taken from the evidence of faster diffusion of nickel than copper along the β phase to the substrate. In deaerated Hank’s solution, corrosion potential, corrosion current density, and critical potential for active-to-passive transition decrease while the passivation range broadens with the period of brazing time. However, all the brazed metals, immersed for different periods in oxygen-saturated Hank’s solution, show similar corrosion behavior, irrespective of the brazing time.  相似文献   

9.
In laser welding-brazing of Al alloy (5A06) and Ti alloy (Ti-6Al-4V) with rectangular CO2 laser spot and with Al-12Si filler wire, element Si enriches at the interface between Ti substrate and the filler metal. It is found that the Si diffusion behavior has a significant effect on the formation of interfacial intermetallic compounds. To analyze the Si diffusion behavior, a model for the prediction of the chemical potential for ternary alloy was established. According to the calculated results of the influen...  相似文献   

10.
采用固体粉末包装热扩散方法,对Ti-6Al-4V合金分别进行表面渗铝和渗硅处理,以提高该合金的抗高温氧化性能。结果表明:Ti-6Al-4V合金表面形成的铝化物涂层的金相组织为单层结构,其上有少量贯穿裂纹存在;主要相结构是TiAl_3。而硅化物涂层的金相组织则为双层结构,外层较厚,呈柱状晶,由TiSi_2相组成;内层则较薄,由Ti_5Si_4相组成。表面渗铝和渗硅处理都可以大大提高Ti-6Al-4V合金的抗高温氧化性能。  相似文献   

11.
In this study, a broad range of parameter combinations (laser power: 100–400 W; scanning speed: 10–90 mm/s) were used to fabricate Ti-47Al-2Cr-2Nb alloy at the layer thickness of 100 μm by selective laser melting (SLM). The preparation of the TiAl-single track by SLM was prone not only to balling and irregularity but also to cracking. Although the optimized process parameters were used to fabricate TiAl specimens, many pores and cracks still existed and a low density was achieved. To understand the mechanism for the crack and pore formation, the connections among the cracks, pores, and the process parameters were investigated in addition to the variation in the crack propagation with an increase in the number of deposition layers. The results indicated that the cracks originated in the third layer, because of the accumulation of residual stresses and the changes in the composition of Ti-47Al-2Cr-2Nb deposition layers. Additionally, the frequency of cracks constantly increased with an increase in the number of deposition layers. Preheating the substrate to 200 °C improved the degree of cracking to a certain extent, as the initiation layer for the cracks increased from the third layer to the fifth layer. Despite the achieved improvement, it was not possible to produce crack-free specimens on the SLM machine used for this study. Finally, there was a good metallurgical bond between the Ti-6Al-4 V substrate and the Ti-47Al-2Cr-2Nb deposition layers that was free of pore and crack defects. These findings suggest that using SLM to fabricate Ti-6Al-4 V/TiAl intermetallic laminate composites may potentially eliminate cracking and improve the properties of TiAl alloys.  相似文献   

12.
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy–stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600–800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.  相似文献   

13.
This paper presents investigations on turning Ti-6Al-4V alloy with multi-layer coated inserts. Turning of Ti-6Al-4V using uncoated, TiAlN coated, and TiAlN + cBN coated single and multi-layer coated tungsten carbide inserts is conducted, forces and tool wear are measured. 3D finite element modelling is utilized to predict chip formation, forces, temperatures and tool wear on these inserts. Modified material models with strain softening effect are developed to simulate chip formation with finite element analysis and investigate temperature fields for coated inserts. Predicted forces and tool wear contours are compared with experiments. The temperature distributions and tool wear contours demonstrate some advantages of coated insert designs.  相似文献   

14.
ABSTRACT

An Au–Ni interlayer was used to improve the joint strength between the Ti-6Al-4V alloy friction welded to the 718 Ni-based alloy. The interlayer was melted and ejected at the interface of the joint during friction welding, showing that frictional heat played a role in brazing of the interlayer. The melted interlayer suppressed the formation of intermetallic compounds between titanium and nickel at the interface. The tensile strength of the joint significantly increased from 460?MPa for direct friction-welded joints, to 698?MPa when the interlayer was added. The mechanism underlying the strength improvement of the friction-welded joint was the unique phenomenon of a combination of brazing of the interlayer and diffusion of solutes in the base metal to the interlayer.  相似文献   

15.
采用选区激光熔化技术(SLM)制备Ti-6Al-4V合金圆棒试样,通过不同的热处理工艺改善材料的拉伸性能,并对SLM制备的Ti-6Al-4V合金试样开展了高周疲劳性能测试。通过微观组织和疲劳试样断口分析,揭示了显微组织结构与拉伸性能的关系,以及Ti-6Al-4V合金的疲劳裂纹起始源和裂纹扩展机理。结果表明,热处理工艺对SLM成型Ti-6Al-4V合金的力学性能有显著的影响,920 ℃×1 h水冷,随后800 ℃×2 h炉冷的固溶时效热处理制度可以获得较好的综合室温拉伸性能。其室温组织为晶界上分布的α相和晶粒内部片层状分布的α+β相。SLM成型Ti-6Al-4V合金显微组织中的晶界形成与扫描路径相关,热处理过程中α相会优先在扫描分区搭接处析出。与手册锻件的疲劳寿命曲线比较,在同样的最大应力水平下,增材试样的疲劳寿命比锻件的疲劳寿命低,这种降低的趋势随着应力水平的降低而逐步增大。在400 MPa的应力水平下(R=-1),锻件的疲劳寿命已经在2×107水平,增材试样的疲劳寿命依然较低,约为锻件的1%。SLM成型Ti-6Al-4V合金的应力疲劳寿命偏低,是由于试样中存在未熔合缺陷造成。扫描分区搭接处易产生未熔合缺陷,而疲劳裂纹也会沿着这些缺陷扩展。  相似文献   

16.
采用万能力学试验机及霍普金森压杆试验研究了固溶和时效处理对Ti-6Al-4V ELI钛合金准静态拉伸性能和动态压缩性能的影响。结果表明,Ti-6Al-4V ELI钛合金经固溶时效处理后(固溶温度941 ℃),其屈服强度可达1097 MPa以上,抗拉强度可达1167 MPa以上。相比热处理前的Ti-6Al-4V ELI钛合金,强度显著提升,而且塑性指标也维持在较高水平。同时,不同应变速率下Ti-6Al-4V ELI钛合金的动态压缩性能提升明显,动态压缩强度和应变速率的对数呈线性关系,且随着应变速率的增加而增大。  相似文献   

17.
采用激光熔覆技术在TC4钛合金表面制备以反应合成TiB2和TiC颗粒为增强相的Ni基复合涂层,利用УТИТВ-100型销-盘摩擦磨损试验机研究了激光熔覆层在真空(10-5Pa)中的干滑动摩擦磨损性能,利用光学显微镜和扫描电子显微镜观察了摩擦偶件的磨损表面形貌,讨论了激光熔覆层的磨损机制。结果表明,激光熔覆层的摩擦系数在0.25~0.5之间,明显低于TC4合金的摩擦系数(0.45~0.8),磨损体积约为TC4合金的40%。随法向载荷和滑动速度的增加,激光熔覆层的磨损体积增加,激光熔覆层的磨损机制主要为粘着磨损和粘附转移物引起的磨粒磨损。  相似文献   

18.
The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze (ZQSn10-10) with Ni and Ni Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that when the interlayer is Ni or Ni Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc.). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830℃/10 MPa/30min. And when the interlayer is Ni Cu, the optimum bonding parameters are 850℃/10MPa/20min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni Cu interlayer both are 155.8MPa, which is 65 percent of the strength of ZQSn10-10 base metal.  相似文献   

19.
This paper deals with the study of the influence of the thermal oxidation (TO) treatment on the tribological properties of Ti-6Al-4V tribopairs. A detailed experimental campaign, including tribological tests, microgeometrical measurements, microhardness tests and phase composition analyses, was carried out on both treated and untreated components. The tribological behavior was studied through the pin-on-disk tests in four different contact conditions: treated disk coupled with untreated pin, untreated disk coupled with treated pin, both treated and both untreated. The effectiveness of the treatment in enhancing the tribological properties of the Ti-6Al-4V alloy sheets was found. In particular, the thermal oxidation treatment, promoting hardness enhancement and the formation of a superficial rutile layer, changed the wear mechanism of the titanium alloy, passing from adhesive wear type, for the untreated case, to abrasive wear, in the treated one.  相似文献   

20.
以Ti+Ni+B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得TiB-TiC共同增强TiNi-Ti2Ni金属间化合物复合涂层。采用OM、SEM、XRD、EDS及AFM等手段分析激光熔覆涂层的显微组织及磨损表面,测试涂层的室温干滑动磨损性能。结果表明,激光熔覆TiB-TiC增强TiNi-Ti2Ni金属间化合物复合涂层熔覆具有独特的显微组织,菊花状的TiB-TiC共晶均匀分布在TiNi-Ti2Ni双相金属间化合物基体中。由于高硬、高耐磨TiB-TiC陶瓷相与高韧性TiNi-Ti2Ni双相金属间化合物基体的共同配合,激光熔覆涂层表现出优异的耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号