首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactic acid bacteria (LAB) were isolated from malted cereals by means of a high‐throughput screening approach and investigated for antimicrobial activity against a range of beer‐spoiling bacteria. Putative bacteriocin‐producing strains were identified by 16S rRNA analysis and the inhibitory compounds were partially characterized. Following determination of the inhibitory spectra of the strains, an unspeciated Lactobacillus sp. UCC128, with inhibitory activity against a range of beer‐spoiling strains was subjected to further characterization. A bacteriocin was purified from this strain and analyzed by mass spectrometry to determine the weight of the protein. The result indicated that the bacteriocin was highly similar to pediocin AcH/PA‐1 from Pediococcus acidilactici. The bacteriocin‐producers identified in this study have the potential to be used in the brewing industry to enhance the microbiological stability of beer in conjunction with hurdles already in place in the brewing process.  相似文献   

2.
Beer is recognized as a safe beverage, owing to its excellent microbiological stability provided by its components, especially iso‐α‐acids from hop and ethanol which have antimicrobial activity. Despite these unfavourable conditions for bacteria, some lactic acid bacteria (LAB) can cause beer spoilage. Resistance to hop compounds is caused, in part, by the product of genes like horA . Understanding how LAB adapts to hop compounds as well as quick detection of these microorganisms is necessary to ensure high‐quality beverages produced by the brewing industry. In this work, we searched for the presence of two main hop‐resistance genes, horA and ORF5, and determined the capacity of four strains of Pediococcus damnosus isolated from a brewery environment to grow in the presence of increasing concentrations of iso‐α‐acids. All strains were able to grow in increasing concentrations of iso‐α‐acids up to 150 μg mL−1. This amount is 10 times greater than the concentration in average beer. Genetic amplification of genes associated with hop‐resistance, demonstrated the presence of horA , but not ORF5 in all tested strains. This communication represents the first report of the presence of horA gene in bacteria isolated from breweries in our country. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

3.
Beer has been generally recognized as a microbiologically stable beverage. However, microbiological incidents occasionally occur in the brewing industry. The microbiological instability of beer is often caused by bacteria consisting of four genera, Lactobacillus, Pediococcus, Pectinatus and Megasphaera. Lactobacillus and Pediococcus belong to the lactic acid bacteria (LAB), whereas Pectinatus and Megasphaera form a group of strict anaerobes that are known as intermediates between Gram‐positive and Gram‐negative bacteria. The frequencies of beer spoilage incidents caused by these four genera have been reported to exceed 90% in Europe and therefore Lactobacillus, Pediococcus, Pectinatus and Megasphaera are considered to be the principal spoilage agents in the brewing industry. Thus, this review consists of three parts involving these four genera. The first part describes spoilage LAB in alcoholic beverages with some emphasis on beer spoilage LAB. In this part, the emergence and evolution of these spoilage LAB is discussed, the insight of which is useful for developing quality control methods for these beverages. The second part is devoted to the hop resistance in beer spoilage LAB. This area of research is evolving rapidly and recent progress in this field is summarized. The third part concerns Pectinatus and Megasphaera. Although this group of beer spoilage bacteria has been described relatively recently, the incident reports in Europe increased in the early 1990s, reaching around 30% of spoilage incidents. Various aspects of Pectinatus and Megasphaera, ranging from their taxonomy and beer spoilage ability to detection and eradication methods are described.  相似文献   

4.
Lactic acid bacteria (LAB) are the most frequently encountered beer‐spoilage bacteria, and they can render beer undrinkable owing to the production of lactic acid, diacetyl and turbidity. Three beer‐spoilage strains, 2011–6, 2011–8 and 2011–11, were isolated from finished beers. Based on the 16S rRNA sequence analysis, these three isolates were identified as Lactobacillus acetotolerans. Only the horA homologue was detected in these strains, while the horC homologue was not detected. In addition, an improved plate culture method for the rapid detection of beer‐spoilage LAB by the addition of catalase was evaluated. Supplementation with catalase enhanced the growth and colony sizes of the spoilage LAB investigated. These beer‐spoilage bacteria, including some slowly growing strains, were detected within five days of incubation using the modified method. Taken together, the modified procedure could be a rapid countermeasure against beer‐spoilage LAB, and it compared favourably with the conventional plate culture method. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

5.
Current methods of detecting beer spoilage lactic acid bacteria (LAB) are time‐consuming and do not differentiate between viable and non‐viable bacteria. In this study, a combination of the conventional polymerase chain reaction (PCR) and propidium monoazide (PMA) pretreatment has been described to circumvent the disadvantages. The horA‐specific PMA‐PCR described here identifies beer spoilage LAB based not on their identity, but on the presence of a gene that is shown to be highly correlated with the ability of LAB to grow in beer. The results suggest that the use of 20 µg/mL or less of PMA did not inhibit the PCR amplification of DNA derived from viable, but putatively non‐culturable (VPNC) Lactobacillus acetotolerans. The minimum amount of PMA to completely inhibit the PCR amplification of DNA derived from dead L. acetotolerans cells was 1.5 µg/mL. The detection limit of established PMA‐PCR assays was found to be 100 VPNC cells/reaction for the horA gene. Furthermore, the horA‐specific PMA‐PCR assays were subjected to 18 reference strains, representing 100% specificity with no false positive amplification observed. In conclusion, the use of horA‐specific PMA‐PCR allows for a substantial reduction in the time required for the detection of potential beer spoilage LAB and efficiently discriminates between live and dead cells. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

6.
Three beer‐spoilage strains of lactic acid bacteria (LAB), Lactobacillus brevis ABBC45, L. lindneri DSM 20690T and L. para‐collinoides DSM 15502T, exhibited strong ATP‐yielding ability in beer. To investigate energy sources, these beer‐spoilage strains were inoculated into beer. After the growth of the strains in beer, utilized components were determined by high performance liquid chromatography (HPLC). As a result, it was shown that citrate, pyruvate, malate and arginine were consumed by beer‐spoilage LAB strains examined in this study. The four components induced considerable ATP production even in the presence of hop compounds, accounting for the ATP‐yielding ability of the beer‐spoilage LAB strains observed in beer. We have further examined the ATP‐yielding ability of other strains of bacteria in beer. Beer‐spoilage bacteria, including Pectinatus frisingensis and P. cerevisiiphilus, showed strong ATP‐yielding abilities, whereas species frequently isolated from brewery environments exhibited low ATP‐yielding abilities. Although some of the nonspoilage LAB strains produced substantial amount of ATP in beer, the measurement of ATP‐yielding ability was considered to be useful as a rapid pre‐screening method for potential beer‐spoilage bacteria isolated from brewery environments.  相似文献   

7.
Hop bitter acids play a major role in enhancing the microbiological stability of beer. However, beer spoilage lactic acid bacteria (LAB) are able to grow in beer by exhibiting strong hop resistance. Recently two hop resistance genes, horA and horC, have been identified in beer spoilage Lactobacillus brevis ABBC45. The horA gene was shown to encode an ATP dependent multidrug transporter that extrudes hop bitter acids out of bacterial cells. In contrast, the product of the horC gene confers hop resistance by presumably acting as a proton motive force (PMF)‐dependent multidrug transporter. Strikingly, the homologs of horA and horC genes were found to be widely and almost exclusively distributed in various species of beer spoilage LAB strains, indicating these two hop resistance genes are excellent species‐independent genetic markers for differentiating the beer spoilage ability of LAB. Furthermore the nucleotide sequence analysis of horA and horC homologs revealed that both genes are essentially identical among distinct beer spoilage species, indicating horA and horC have been acquired by beer spoilage LAB through horizontal gene transfer. Taken collectively, these insights provide a basis for applying horA and horC to the species‐independent determination of beer spoilage LAB, including yet uncharacterized species. In addition to the hop resistance mechanisms mediated by multidrug transporters, proton translocating ATPase and the ATP production system were shown to contribute to the hop resistance mechanisms in beer spoilage LAB by generating PMF and ATP that are necessary for survival in beer.  相似文献   

8.
Strong beer spoilage strains Lactobacillus lindneri DSM 20692 and Lactobacillus paracollinoides JCM 11969T were repeatedly subcultured in degassed beer and their culturability on MRS agar was examined. As a result, the two strains were found to show decreased culturability, suggesting that the prolonged contact with beer reduces the culturability of beer spoilage lactic acid bacteria (LAB). After 30 subcultures in degassed beer, both strains were subjected to sublethal heat treatment. As a consequence, L. lindneri DSM 20692 and L. paracollinoides JCM 11969T were no longer detectable on MRS agar despite the presence of 460 viable cells, indicating that the viable but nonculturable (VNC) states were induced for both strains. Problematically, the heat treated VNC strains were shown to exhibit beer spoilage ability, suggesting that spoilage incidents can occur without detection by culture media. It was also shown that, once acquired, the VNC states are stably maintained in beer without further heat treatment. These results suggest the possibility that beer spoilage LAB strains remain hidden in pitching yeast and work‐in‐process products without detection. Furthermore L. lindneri DSM 20692 and L. paracollinoides JCM 11969T in VNC states were successfully stored at ?80°C with 10% dimethyl‐sulfoxide as a cryoprotectant and reconstituted in degassed beer without losing VNC characteristics. Taken together, these findings show that valuable bioresources can be acquired from culturable beer spoilage LAB strains and maintained for long‐term storage as frozen culture stocks.  相似文献   

9.
Nisin is a bacteriocin, which is capable of eliminating more than 90% of all potential beer spoilage Gram‐positive bacteria. Hence, the implementation of nisin‐producing cultures into the brewing process needs to be evaluated systematically. In this work, the genetic relationships and properties, as well as the reactions of four strains of Lactococcus lactis ssp. lactis, known to be capable of producing nisin (NCIMB 8780, 8586, 701402 and 701403), and seven isolated strains of the same species found in the beverage environment (TUM 575, 8947, 8127, 8446, 8673, 8973 and 8872), were tested under typical brewery conditions. As in previous work, it was found, that all of the tested strains could be genetically differentiated via PCR‐(GTG)5. In addition, the absence of the genes HorA, HorC and ORF5 indicated that all strains were sensitive to hop components. The agar diffusion assay test proved to be the most reliable method to precisely determine different nisin concentrations. Nisin formation, acid formation and the reproduction rates of the organisms were tested subsequently in various brewery relevant culture media such as MRS, first wort (unhopped) and wort (hopped). MRS provided the best environment for bacterial growth and hence acid and nisin production. The four NCIMB strains, which were the only ones capable of producing nisin under the named conditions, were chosen for study with regards to their tolerance to specific compounds found in the brewery environment. The strains NCIMB 8780 and 8586 produced comparatively higher amounts of nisin and were more tolerant to hop bitterness, ethanol, high gravity and low extract conditions. The growth rates, acid production and nisin production of all strains decreased with increasing bitter units and ethanol content. The optimum extract concentration was 5–10°P. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

10.
Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile‐filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture‐dependent methods and PCR‐DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR‐DGGE technique coupled with the culture‐dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by‐products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.  相似文献   

11.
Japanese rice wine, sake, is a traditional alcoholic beverage in Japan. Similar to the case with beer, sake is known to be microbiologically stable and most microorganisms fail to grow in sake. This is principally due to its high ethanol concentration that reaches approximately 20% (v/v) in undiluted sake products and 15% (v/v) in finished products. Despite the high level of ethanol content, spoilage incidents occasionally occur in sake, due to the presence of highly ethanol‐tolerant lactobacilli, known as hiochi‐bacteria. Hiochi‐bacteria are generally composed of two groups of lactobacilli, hiochi‐lactobacilli and true hiochi‐bacilli. The former group of lactobacilli is less ethanol‐and heat‐tolerant, and therefore rarely poses a problem to sake products. In contrast, the true hiochi‐bacilli exhibit extraordinarily high ethanol tolerance and cause spoilage incidents in sake, conferring acidity and off‐flavors, such as diacetyl, in spoiled products. From a taxonomic standpoint, the true hiochi‐bacilli mainly consist of two Lactobacillus species, L. fructivorans and L. homohiochi. The strains of true hiochi‐bacilli prefer sake‐like environments, and the presence of ethanol and mevalonic acid, in combination with low pH milieu, is essential or stimulatory for the growth of these bacteria. Interestingly, the type strain of L. fructivorans does not show such characteristics, suggesting the true hiochi‐bacilli are profoundly adapted to sake environments. Although beer spoilage lactic acid bacteria do not have close taxonomic relationships with true hiochi‐bacilli, there are striking similarities between these two groups of spoilage lactic acid bacteria. In this review, unique features of sake and beer spoilage lactic acid bacteria are discussed in comparative terms.  相似文献   

12.
High hydrostatic pressure (HHP) (400 MPa/15 min, 500 MPa/10 min, 600 MPa/5 min at 20 °C) and heat (60 °C/15 min) processing of wheat beers were evaluated by examining their impacts on microorganisms, colloidal haze, flavour, foam stability and shelf‐life prediction during 84 days of storage at 20 °C. The results obtained showed that the microbiological stability of HHP beers was comparable with heat‐treated samples, and the development of both aerobic bacteria and lactic acid bacteria was inhibited for 84 days of storage. The main parameters of the wheat beer, such as ethanol content, original extract, pH, bitterness and viscosity, were scarcely affected by either treatment compared with the control samples; however, heat pasteurization increased the colour value. Heat‐pasteurized beer resulted in an increase in the phenethyl alcohol concentration and a decrease in isoamyl acetate and ethyl acetate levels compared with the HHP samples. These treatments did not affect the amount of 4‐vinylguaiacol and 4‐vinylphenol in the beer. The HHP‐treated beers had higher colloidal haze and foam stability values than the heat‐pasteurized beers. Dynamic light scattering analysis showed that HHP treatments at 500 MPa/10 min resulted in smaller and more uniform particle sizes, which had a positive effect on beer haze stability during storage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

13.
There have been many beer‐spoilage incidents caused by wild yeasts. Saccharomyces cerevisiae, Dekkera anomala and D. bruxellensis have been recognized as beer‐spoilage yeasts in the brewing industry. In contrast, the beer spoilage ability of Brettanomyces custersianus has not been well characterized, although this species was isolated from beer. In this study, the beer‐spoilage ability of currently described Dekkera/Brettanomyces yeast species was investigated. As a consequence, D. anomala, D. bruxellensis and B. custersianus were shown to grow in commercial beers. On the other hand, the remaining two Brettanomyces species, B. naardenensis and B. nanus, did not grow in beer. These results indicate that B. custersianus should be recognized as a beer‐spoilage species, in addition to S. cerevisiae, D. anomala, and D. bruxellensis. Therefore we developed multiplex polymerase chain reaction (PCR) for the simultaneous detection and identification of B. custersianus and the other beer‐spoilage yeast species. For this purpose, PCR primers were designed in the internal transcribed spacer region or 26S rDNA, and each PCR product was made in different sizes to easily discriminate the species from electrophoretic results. Specificity, reactivity and sensitivity of the designed primers were evaluated. As a result, the developed multiplex PCR method was shown to have high specificity and reactivity, and therefore was considered as an effective tool to identify beer‐spoilage yeast species. This tool can contribute to microbiological quality assurance in breweries. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

14.
Thirty‐three putative inhibitor‐producing lactic acid bacteria (LAB) were isolated from malted barley based on their ability to inhibit growth of two indicator strains. Eleven of the inhibitor‐producing LAB produced an antimicrobial activity which was active across a wide pH range, relatively insensitive to heat treatment while sensitive to treatment with proteolytic enzymes indicating that the inhibitory compounds are proteinaceous in nature and therefore bacteriocin‐like inhibitory substances. Ten of these eleven malt isolates were observed to secrete the inhibitory compounds into the cell‐free supernatant with optimal production occurring in the late exponential growth phase. The inhibitory spectra of these isolates included various Gram‐positive bacteria among which a variety of beer‐spoiling bacteria.  相似文献   

15.
Barley isolate Lactococcus lactis M30 produces an antimicrobial proteinaceous activity, which at least under laboratory conditions was shown to target beer spoiling lactic acid bacteria, including Lactobacillus brevis BSH9. The aim of this study was to investigate the application of this antibacterial activity at various stages of the brewing process and in packaged beer. Lactococcus lactis M30 was shown to produce the antimicrobial activity during growth under specific conditions in fortified unhopped wort. However, this activity was lost during wort boiling and yeast fermentation. When the bacteriocin was added directly to beer it retained in vitro activity following pasteurisation, while it was also shown to inhibit growth in situ when pasteurised beer was challenged with low levels of the beer spoiling Lactobacillus brevis BSH9 culture. The capacity of the bacteriocin to prevent microbial spoilage of beer was tested at various temperatures over a period of seven weeks. Storage of bacteriocin‐containing beer at 30°C or room temperature resulted in a decrease in antimicrobial activity over time, but when refrigerated or frozen, this beer retained sufficient activity to be effective against Lactobacillus brevis BSH9.  相似文献   

16.
The inactivation of spoilage microorganisms in beer using high‐pressure homogenization (HPH) was studied with the aim of evaluating the possibility of changing the conventional pasteurization process using this particular process. The homogenization pressure required for the inactivation of lactic acid bacteria, acetic bacteria and yeasts was investigated. For the most resistant microorganisms, the pressure inactivation kinetics and the effects of multiple process passes, initial temperature of the beer and the CO2 concentration were studied. The results indicated that Lactobacillus delbrueckii was the most resistant microorganism tested, requiring 250 MPa to reach a six decimal reduction. Additionally, results showed that L. delbrueckii inactivation followed a second‐order kinetic process. A multi‐pass process and the use of a high initial beer temperature increased inactivation by HPH with L. delbrueckii, allowing the use of 150 MPa to achieve a five log cycle of inactivation. In contrast, a high CO2 concentration reduced the efficacy of the HPH process. The results that were obtained are useful for high‐pressure homogenization applications in breweries and help to elucidate the effect of this new technology in a beverage that is both alcoholic and carbonated. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

17.
In order to sustain the fast‐expanding beer industry, companies need to attract new female consumers. The main objective of this study was to identify the extrinsic and intrinsic attributes that drive female consumers' purchase of beer. A literature review and focus group (n = 6) were conducted, and six attributes were identified as purchase drivers of beer. These attributes included flavour, appearance (colour), packaging, brand, production methods and beer style. These attributes were used to design a choice‐based conjoint analysis survey. The survey was administered to 277 females (aged 35.09 ± 15.2) residing in Nova Scotia (Canada). The results indicated that sweetness has a positive effect on liking. Bitterness has a strong negative effect on liking of beer. Black colour, stouts and macro‐brewed beers also had negative effects on liking of beer products. The consumer clusters showed that generally all of the consumer groups liked sweet beers with low bitterness.  相似文献   

18.
The ability of lactic acid bacteria to grow in beer has been studied using 31 beers, 13 strains of Lactobacillus and 3 strains of Pediococcus isolated from wort or beer. In 3 beers all the micro-organisms were able to grow, in 5 beers none of them developed and diverse results were obtained with the remaining 23 beers. Resistance of the beers to spoilage was not correlated with values of pH, specific gravity, total or free amino nitrogen, individual or total fermentable sugars, colour or levels of sulphur dioxide. Resistant beers became sensitive after certain filtration treatments and after heating at 80° for 15 minutes, but not after treatment at 60°. Resistance to spoilage is tentatively attributed to the presence of a yeast metabolite which is heat-labile. The lactic acid bacteria varied in their ability to grow in beer but those possessing a broad range of biochemical abilities had the greater propensity to cause spoilage.  相似文献   

19.
Low‐alcohol beer can be obtained by physical and biological methods. The group of biological methods includes modification of the mashing regimes and changes in the fermentation process. The aim of the present work was to study two mashing regimes for low‐alcohol beer production. The increase in the mashing duration at 50 °C led to a linear increase in the extract and the concentration of reducing and fermentable sugars in the wort. It was found that the rate of formation of reducing sugars was higher than that of the formation of fermentable sugars, which can be used for the optimization of the mashing process. The introduction of a pause at 77 °C did not lead to a substantial increase in the concentration of fermentable extract, but did lead to an increase in the total and non‐fermentable extract. The available nitrogen content in the laboratory wort was in the range of 120–150 mg/dm3. As a result of conducting fermentation processes with the top‐fermenting yeast strain Saccharomyces cerevisiae S‐33, it was found that the combination of a small amount of fermentable sugars and a low fermentation temperature led to a beer being obtained that met the requirements for a low‐alcohol beverage. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

20.
Despite the increasing demand, the production of non‐alcohol beers is still limited by unsatisfactory or artificial flavour and taste. In this study, a novel approach to producing non‐alcohol beer is presented, in which the alcohol‐reducing techniques, limited fermentation and vacuum distillation were combined. Starting from barley and wheat malts, wort with a low level of fermentable sugars was prepared by infusion mashing and lautering. Limited fermentation was carried out by Saccharomycodes ludwigii at 18°C. When the level of fermentable sugar was reduced by 25%, the fermented wort was quickly cooled from 18 to 0°C and held at that temperature for two days. The young beer was obtained after degassing and removal of yeast and was then subjected to vacuum distillation at 0.06 MPa to remove the alcohol. The concentrated extract is suitable for storage and transportation. The final product of non‐alcohol beer was obtained by dilution with deoxygenated water and carbonation with 6.0 g/L CO2, followed by addition of 8–12% of regular beer and equilibration for 2–3 days to develop normal beer aroma. The results showed that the non‐alcohol beer had several favourable properties, including the alcohol level of <0.5% (v /v), colour 7.0 (EBC), thiobarbituric acid value of 1.05 and ratio of alcohols to esters of 1.08. Compared with other methods for the production of non‐alcohol beer, this novel approach produced a favourable alternative to regular beers with similar flavour characteristics and satisfactory stability. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号