首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Time interleaved converter arrays   总被引:4,自引:0,他引:4  
High-speed monolithic converters normally use a variation of the flash technique, which 2/SUP n/ comparators in parallel to obtain a fast n-bit conversion. Although this method allows for high converter bandwidth, it is not very area efficient, and results in large die sizes for even modest resolution converters. In the technique presented here, a number of small but area efficient converters are operated in a time-interleaved fashion to achieve the bandwidth of a flash circuit, but in a substantially smaller area. This technique is analyzed with respect to noise and distortion resulting from nonideal array characteristics, and is demonstrated by way of a four-way array test-chip. This chip consists of four time-interleaved 7-bit weighted-capacitor A/D converters fabricated in a 10 /spl mu/m metal-gate CMOS process. Full 7-bit linearity is maintained up to a 2.5 MHz conversion rate, with operation at reduced linearity continuing to approximately 4 MHz. The design of this chip, and anticipated characteristics if fabricated in a modern 4-5 /spl mu/m process are described.  相似文献   

2.
A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC   总被引:3,自引:0,他引:3  
A pipelined analog-to-digital converter (ADC) architecture suitable for high-speed (150 MHz), Nyquist-rate A/D conversion is presented. At the input of the converter, two parallel track-and-hold circuits are used to separately drive the sub-ADC of a 2.8-b first pipeline stage and the input to two time-interleaved residue generation paths. Beyond the first pipeline stage, each residue path includes a cascade of two 1.5-b pipeline stages followed by a 4-b "backend" folding ADC. The full-scale residue range at the output of the pipeline stages is half that of the converter input range in order to conserve power in the operational amplifiers used in each residue path. An experimental prototype of the proposed ADC has been integrated in a 0.18-/spl mu/m CMOS technology and operates from a 1.8-V supply. At a sampling rate of 150 MSample/s, it achieves a peak SNDR of 45.4 dB for an input frequency of 80 MHz. The power dissipation is 71 mW.  相似文献   

3.
A self-calibrating analog-to-digital converter using binary weighted capacitors and resistor strings is described. Linearity errors are corrected by a simple digital algorithm. A folded cascode CMOS comparator resolves 30 /spl mu/V in 3 /spl mu/s. An experimental converter fabricated using a 6-/spl mu/m-gate CMOS process demonstrates 15-bit resolution and linearity at a 12-kHz sampling rate.  相似文献   

4.
A pixel structure for still CMOS imager application called the pseudoactive pixel sensor (PAPS) is proposed and analyzed in this paper. It has the advantages of a low dark current, high signal-to-noise ratio, and a high fill factor over the conventional passive pixel sensor imager or active pixel sensor imager. The readout circuit called the zero-bias column buffer-direct-injection structure is also proposed to suppress both the dark current of the photodiode and the leakage current of row switches by keeping both biases of photodiode and the parasitic p-n junction in the column bus at or near zero voltage. The improved double delta sampling circuits are also used to suppress fixed pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed PAPS CMOS imager with the format of 352/spl times/288 (CIF) has been fabricated by using a 0.25-/spl mu/m single-poly-five-level-metal (1P5M) n-well CMOS process. The pixel size is 5.8 /spl mu/m/spl times/5.8 /spl mu/m. The pixel readout speed is from 100 kHz to 10 MHz, corresponding to the maximum frame rate above 30 frames/s. The proposed still CMOS imager has a fill factor of 58%, chip size of 3660 /spl mu/m/spl times/3500 /spl mu/m, and power dissipation of 24 mW under the power supply of 3.3 V. The experimental chip has successfully demonstrated the function of the proposed new PAPS structure. It can be applied in the design of large-array-size still CMOS imager systems with a low dark current and high resolution.  相似文献   

5.
The design of a 600-MS/s 5-bit analog-to-digital (A/D) converter for serial-link receivers has been investigated. The A/D converter uses a closed-loop pipeline architecture. The input capacitance is only 170 fF, making it suitable for interleaving. To maintain low power consumption and increase the sampling rate beyond the amplifier settling limit, the paper proposes a calibration technique that digitally adjusts the reference voltage of each pipeline stage. Differential input swing is 400 mV/sub p-p/ at 1.8-V supply. Measured performance includes 25.6 dB and 19 dB of SNDR for 0.3-GHz and 2.4-GHz input frequencies at 600 MS/s for the calibrated A/D converter. The suggested calibration method improves SNDR by 4.4 dB at 600 MS/s with /spl plusmn/0.35 LSB of DNL and /spl plusmn/0.15 LSB of INL. The 180 /spl times/ 1500 /spl mu/m/sup 2/ chip is fabricated in a 0.18-/spl mu/m standard CMOS technology and consumes 70 mW of power at 600 MS/s.  相似文献   

6.
By linking the unique capabilities of photonic devices with the signal processing power of electronics, photonically sampled analog-to-digital (A/D) conversion systems have demonstrated the potential for superior performance over all-electrical A/D conversion systems. We adopt a photonic A/D conversion scheme using low-temperature (LT)-grown GaAs metal-semiconductor-metal (MSM) photoconductive switches integrated with Si-CMOS A/D converters. The large bandwidth of the LT GaAs switches and the low timing jitter and short width of mode-locked laser pulses are combined to accurately sample input frequencies up to several tens of gigahertz. CMOS A/D converters perform back-end digitization, and time-interleaving is used to increase the total sampling rate of the system. In this paper, we outline the development of this system, from optimization of the LT GaAs material, speed and responsivity measurements of the switches, bandwidth and linearity characterization of the first-stage optoelectronic sample-and-hold, to integration of the switches with CMOS chips. As a final proof-of-principle demonstration, a two-channel system was fabricated with LT GaAs MSM switches flip-chip bonded to CMOS A/D converters. When operated at an aggregate sampling rate of 160 megasamples/s, the prototype system exhibits /spl sim/3.5 effective number of bits (ENOB) of resolution for input signals up to 40 GHz.  相似文献   

7.
A high-responsivity 9-V/Lux-s high-speed 5000-frames/s (at full 512/spl times/512 resolution) CMOS active pixel sensor (APS) is presented in this paper. The sensor was designed for a 0.35-/spl mu/m 2P3M CMOS sensor process and utilizes a five-transistor pixel to provide a true parallel shutter. Column-parallel analog-to-digital converter (ADC) architecture yields fast readout from pixels and digitization of the data simultaneously with acquiring a new frame. The chip has a two-row SRAM to store data from the ADC and read previous rows of data out of the chip. There are a total of 16 parallel ports operating up to 90 MHz delivering /spl sim/1.3 Gpixel/s or 13 Gb/s of data at the maximum rate. In conclusion, a comparison between two high-speed digital CMOS sensor architectures, which are a column-parallel APS and a digital pixel sensor (DPS), is conducted.  相似文献   

8.
An 8-channel 10-bit pipeline analog-to-digital converter, designed for use in an integrated three-dimensional ultrasound imaging system, has been implemented in a 0.25-/spl mu/m CMOS technology. Two parallel multiplexing sample-and-hold stages are employed to multiplex a total of eight adjacent ultrasound channels, each sampled at 20 MHz. The sampled and multiplexed signals are fed into two parallel time-interleaved pipeline paths, each operating at 80 MHz. The two parallel pipelines are subsequently multiplexed into a single pipeline operating at 160 MHz to conserve area and reduce complexity. An experimental prototype of the proposed architecture occupies less than 4 mm/sup 2/ of active silicon area and shows a peak signal-to-noise-plus-distortion ratio more than 54 dB for a 2.1-MHz input signal, while dissipating only 20 mW of analog power per input channel from a 2.5-V supply.  相似文献   

9.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

10.
The design of a 0.6-/spl mu/m CMOS programmable integrated digital PID controller for a buck converter is presented. Several novel features are implemented. These include: 1) a dual-band switching scheme for sampling the output voltage for better output resolution; 2) a dual-band switching PWM generator with a modified tapped delay line for area efficiency; 3) a VCO driving a counter to serve as an ADC; 4) a programmable PID compensator employing variable integration times for enhancing accuracy and stability; and 5) complex pole-zero cancellation in extending the bandwidth of the control loop. The converter is designed for variable output applications, and the fast digital loop achieves a tracking time of 50 /spl mu/s for a 1-V step change of the reference voltage. The converter switches at 1 MHz and attains a maximum efficiency of 90% when delivering a load of 125 mW.  相似文献   

11.
This paper describes a 0.35-/spl mu/m CMOS fourth-order bandpass analog-digital sigma-delta (/spl Sigma//spl Delta/) modulator for wide-band base stations receivers. The modulator, based on a time-interleaved four-path architecture, achieves an equivalent sampling frequency of 280 MHz, although the building blocks operate at only 70 MHz. In measurements, the prototype chip achieves a dynamic range of 72 dB (12 bits of resolution) with a signal bandwidth of 4.375 MHz centered around an intermediate frequency of 70 MHz. The measured spurious-free dynamic range is 69 dB. The /spl Sigma//spl Delta/ modulator dissipates 480 mW from a 3.3-V supply, including voltage reference buffers and output pads with high-driving capabilities, and occupies 20 mm/sup 2/ of silicon area.  相似文献   

12.
A multicarrier Gaussian minimum shift keying (GMSK) modulator with a 14-bit on-chip digital-to-analog (D/A) converter is presented. The design contains four GMSK modulators, which generate GMSK modulated carriers at the user-defined center frequencies. In wireless base stations, the modulated transmit signals are usually combined at the RF frequency after power amplification. The multicarrier modulator combines four GMSK modulated signals in the digital domain, thereby eliminating the need for an antenna microwave combiner. A new digital ramp generator and output power-level controller performs both the burst ramping and the dynamic power control in the digital domain. The maximum dynamic performance is obtained by multiplexing two D/A converters with output sampling switches. The digital multicarrier GMSK modulator is designed to fulfill the derived spectrum and phase-error specifications of the GSM 900/1800/1900 base stations for pico-, micro-, and macrocells. The die area of the chip is 26.8 mm/sup 2/ in 0.35-/spl mu/m CMOS (in BiCMOS) technology. Power consumption is 706 mW at 3.3 V with 52 MHz.  相似文献   

13.
We present a single-chip integration of a CMOS image sensor with an embedded flexible processing array and dedicated analog-to-digital converter. The processor array is designed to perform convolution and transformation algorithms with arbitrary kernels. It has been designed to carry out the multiplication of analog image data with given digital kernel coefficients and to add up the results. The processor array is an analog implementation of a highly parallel architecture which is scalable to any desired sensor resolution while preserving video-rate operation. A prototype implementation has been realized in a 0.6-/spl mu/m CMOS technology. Switched current technique has been applied to obtain compact and robust circuits. The prototype's sensor resolution is 64 /spl times/ 128 pixels. The processor array occupies a small chip area and consumes only a small percentage of the power (250 /spl mu/W) of the whole image sensor.  相似文献   

14.
A charge-domain sampling technique for realization of mixed-mode finite-impulse response (FIR) filters is presented. The method is based on weighting signal current samples integrated into a sampling capacitor with a set of parallel digitally controlled current-mode switches each carrying a unit current element. The fine achievable resolution and digital controllability of the filter tap coefficients allows realization of advanced programmable FIR filtering functions embedded into high-frequency signal sampling. Circuit-level simulation results of an example 50-MHz IF-sampler with a built-in 22-tap complex bandpass sinc/sup 3/ FIR function in 0.35-/spl mu/m CMOS are shown, demonstrating the feasibility of the presented method.  相似文献   

15.
A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.  相似文献   

16.
A complete monolithic stereo 16-bit D/A converter primarily intended for use in compact-disc players and digital audio tape recorders is described. The D/A converter achieves 16-bit resolution by using a code-conversion technique based upon oversampling and noise shaping. The band-limiting filters required for waveform smoothing and out-of-band noise reduction are included. Owing to the oversampling principle most applications will require only a few components for an analog postfilter. The converter has a linear characteristic and linear phase response. The chip is processed in a 2-/spl mu/m CMOS process and the die size is 44 mm/SUP 2/. Only a single 5-V supply is needed.  相似文献   

17.
A sub-sampling mixer that incorporates sampling switches and hold capacitors into the parallel resonant LC load of an LNA is proposed. The noise figure of the proposed sub-sampling mixer is lower than that of a standard sampling circuit because the proposed mixer has narrow-band gain and input noise filtering properties. A novel level-shifting clock buffer with fast rise and fall times to drive the mixer sampling switches is presented. The mixer was fabricated in a 0.18 /spl mu/m CMOS process and measured results are presented for an RF input frequency of 2.42 GHz and a sampling frequency of 100 MHz. With a measured noise figure of 21.8 dB, the proposed circuit shows improved performance compared to other published sub-sampling mixers.  相似文献   

18.
A/D converters used in telemetry, instrumentation, and measurements require high accuracy, excellent linearity, and negligible DC offset, but need not be fast. A simple and robust instrumentation A/D converter, fabricated in a low-voltage 4-/spl mu/m CMOS technology, is described. The measured overall accuracy was 16 bits. Using a digital compensation for parasitic effects, both offset and nonlinearity were below 12 /spl mu/V. With analog compensation, the offset was 60 /spl mu/V and the nonlinearity below 15 /spl mu/V. These results indicate that even higher accuracy can be achieved using higher voltage technology.  相似文献   

19.
A 12-bit 320-MSample/s current-steering D/A converter in 0.18-/spl mu/m CMOS is presented. In order to achieve high linearity and spurious free dynamic range (SFDR), a large degree of segmentation has been used, with the seven most significant bits (MSBs) being implemented as equally weighted current sources. A "design-for-layout" approach has allowed this to be done in an area of just 0.44 mm/sup 2/. The increased switching noise associated with a high degree of segmentation has been reduced by a new latch architecture. Differential nonlinearity of /spl plusmn/0.3 LSB and integral nonlinearity of /spl plusmn/0.4 LSB have been measured. Low-frequency SFDR of 95 dB has been achieved, while SFDR at 320 MS/s remains above 70 and 60 dB for input frequencies up to 10 and 60 MHz, respectively. The converter consumes a total of 82 mW from 1.8-V and 3.3-V supplies. The validity of the techniques used has been demonstrated by fabricating the converter in two separate 0.18-/spl mu/m processes with similar results measured for both.  相似文献   

20.
This study presents a 15-b 40-MS/s switched-capacitor CMOS pipelined analog-to-digital converter (ADC). High resolution is achieved by using a correlation-based background calibration technique that can continuously monitor the transfer characteristics of the critical pipeline stages and correct the digital output codes accordingly. The calibration can correct errors associated with capacitor mismatches and finite opamp gains. The ADC was fabricated using a 0.25-/spl mu/m 1P5M CMOS technology. Operating at a 40-MS/s sampling rate, the ADC attains a maximum signal-to-noise-plus-distortion ratio of 73.5 dB and a maximum spurious-free-dynamic-range of 93.3 dB. The chip occupies an area of 3.8/spl times/3.6 mm/sup 2/, and the power consumption is 370 mW with a single 2.5-V supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号