首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Corrosion of boilers and heat exchangers is accelerated in the presence of vanadium, sodium, and sulfur from low-grade fuels. Several iron- and nickel-based alloys were immersed in 60 mol% V2O5–40Na2SO4 salt for 1000 h in order to investigate their degradation behavior at 600 °C in air. Materials performance was analyzed by means of substrate recession rate and metallographic characterization. Their corrosion mechanism is characterized by the formation of a sulfide/oxide layer adjacent to the metal, the dissolution of scale oxides in the molten deposit, and their precipitation near the outer surface of the deposit. High Ni- and Cr-containing alloys show the lowest metal loss rates. Al addition was detrimental due to low-melting eutectic AlVO4–V2O5 formation. Fe–Cr-based alloys showed the highest metal loss rates. In such alloys, high Cr additions (above 20%) did not improve the performance due to the negative synergetic effect by simultaneous dissolution of Fe2O3 and Cr2O3. The predominant salt composition at the corrosion front varied from vanadate rich to sulfate rich during the exposure. This change in the attacking salt makes it difficult to find a protective material for mixed sulfate–vanadate-induced corrosion.  相似文献   

2.
Disk alloys used in advanced gas turbine engines often contain significant amounts of Mo (2 wt% or greater), which is known to cause corrosion under Type I hot corrosion conditions (at temperatures around 900 °C) due to alloy-induced acidic fluxing. The corrosion resistance of several model and commercial Ni-based disk alloys with different amounts of Mo with and without Na2SO4 deposit was examined at 700 °C in air and in SO2-containing atmospheres. When coated with Na2SO4 those alloys with 2 wt% or more Mo showed degradation products similar to those observed previously in Mo-containing alloys, which undergo alloy-induced acidic fluxing Type I hot corrosion even though the temperatures used in the present study were in the Type II hot corrosion range. Extensive degradation was observed even after exposure in air. The reason for the observed degradation is the formation of sodium molybdate. Transient molybdenum oxide reacts with the sodium sulfate deposit to form sodium molybdate which is molten at the temperature of study, i.e., 700 °C, and results in a highly acidic melt at the salt alloy interface. This provides a negative solubility gradient for the oxides of the alloying elements, which results in continuous fluxing of otherwise protective oxides.  相似文献   

3.
Low-temperature hot corrosion tests were performed on bulk Cr2AlC MAX phase compounds for the first time. This material is a known alumina-former with good oxidation and Type I high-temperature hot corrosion resistance. Unlike traditional (Ni,Co)CrAl alumina formers, it contains no Ni or Co that may react with Na2SO4 salt deposits needed to form corrosive mixed (Ni,Co)SO4–Na2SO4 eutectic salts active in Type II hot corrosion. Cr2AlC samples coated with 20K2SO4–80Na2SO4 salt were exposed to 300 ppm SO2 at 700 °C for times up to 500 h. Weight change, recession, and cross-sectional microstructures identified some reactivity, but much reduced (<?1/10) compared to a Ni(Co) superalloy baseline material. Layered Al2O3/Cr2O3 scales were indicated, either separated by or intermixed with some retained salt. However, there was no conclusive indication of salt melting. Accelerated oxidation was proposed to explain the results, and coarse Cr7C3 impurities appeared to play a negative role. In contrast, the superalloy exhibited outer Ni(Co) oxide and inner Cr2O3 scales, with Cr–S layers at the interfaces. Massive spallation of the corrosion layers occurred repeatedly for the superalloy, but not at all for Cr2AlC. This indicates some potential for Cr2AlC as LTHC-resistant coatings for superalloys.  相似文献   

4.
The inhibitory potential of an acid extract of Eichhornia crassipes constituents on corrosion of mild steel in 0.5 M H2SO4 solution was the basis of this study. Acid extract of the root was employed to create the same type of environment for acidic cleaning and pickling. The roots of Eichhornia crassipes (water hyacinth) were sun-dried and pulverized into powdered form. Acid extraction was carried out by weighing 10 g of the pulverized roots into a beaker containing 1000 mL of 0.5 M H2SO4, placed in water bath at 90°C for 6 h and filtered the second day. The mild steel with a known weight was immersed inside the respective concentration of the blank and inhibitors (2–10% vol/vol) solutions at room temperature, after which it was retrieved and weighed at 1-day interval progressively for 12 days. A collection of compositional data was from AAS, FTIR. Polarization resistant, current density (I corr), and corrosion potentials (E corr) obtained from Methro Ohms Potentiostat. Phytochemical screening of the corrosion product was carried out using Spectrophotometer. Polarization calculation shows that the root acid extracts on mild steel have corrosion resistance potentials even after preserving it for 60 days.  相似文献   

5.
The early-stage scaling behavior of a β-Ni–36Al alloy undergoing Na2SO4-deposit-induced degradation at 700 °C was systematically studied using SEM and TEM. After 20 h of exposure in an O2–1000 ppm SO2 ambient, the deposit-coated alloy formed a dense but thin Al2O3 scale on most areas of the surface; however, large nodules formed locally. Nodule formation occurred where the scale had lost its protective character, with rapid internal oxidation ensuing. The presence of sulfur both in the environment and in the salt played a key role in nodule formation. Removal of SO2/SO3 from the gas mixture, or of the Na2SO4 deposit from the surface, prevented nodule formation, while removing the sulfur source after nodule formation prevented further nodule growth. The degradation could be linked to the dissolution of reaction products in the Na2SO4 deposit and the formation of a low-temperature eutectic liquid. Further, when an Na2SO4–48% MgSO4 deposit was used, the nodule density increased.  相似文献   

6.
Titanium is widely used as an implant material for artificial teeth. Furthermore, various studies have examined surface treatment with respect to the formation of a fine passive film on the surface of commercial titanium and its alloys and to improve the bioactivity with bone. However, there is insufficient data about the biocompatibility of implant materials in the body. The purpose of this study was to examine whether surface modification affects the precipitation of apatite on titanium metal. Specimens were chemically washed for 2 min in a 1∶1∶1.5 (vol.%) mixture of 48 %HF, 60%HNO3 and distilled water. The specimens were then chemically treated with a solution containing 97%H2SO4 and 30%H2O2 at the ratio of 1∶1 (vol.%) at 40°C for 1h, and subsequently heat-treated at 400°C for 1h. All the specimens were immersed in HBSS with pH 7.4 at 36.5°C for 15d, and the surface was examined with TF-XRD, SEM, EDX and XPS. In addition, specimens of commercial pure Ti, with and without surface treatment, were implanted in the abdominal connective tissue of mice for 28 d. Conventional aluminum and stainless steel 316L were also implanted for comparison. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a solution of H2SO4 and H2O2. The average roughness was 2.175 μm after chemical surface treatment. The amorphous titania was subsequently transformed into anatase by heat treatment at 400°C for 1h. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was 47.1μm in the chemically treated Ti, and 52.2, 168.7 and 101.9μm, respectively, in the untreated commercial pure Ti, aluminum and stainless steel 316L.  相似文献   

7.
Effects of temperature and potential on the electrochemical corrosion behavior of alloy AISI 304 (UNS S30400) Stainless steel were investigated in 3 wt.% cerium nitrate (Ce[NO3]3.6H2O) solution. With an increase in electrolyte temperature from ambient temperature to 90°C, the corrosion potential of the alloy shifted towards the noble direction, and the resistance to polarization increased due to the formation of Ce-oxide on the electrode surface. The oxide films formed at the open circuit potential (OCP) and a passive potential of 0.4 VSCE were examined by x-ray photoelectron spectroscopy (XPS). The oxide film formed at 50°C and a passive potentialof 0.4 VSCE consists of mixed oxides of Ce and Cr, whereas that at OCP consists of only Cr oxide. The formation of Cr oxides on the electrode surface was primarily due to the nitrate (NO3 ) ions in Ce(NO3)3.6H2O electrolyte.  相似文献   

8.
Frequency dependences of the impedance of Co2Si electrode in 0.5 M H2SO4 and 0.05 M H2SO4 + 0.45 M Na2SO4 solutions are measured in the ranges of the active dissolution, active-passive transition, passive state, and transpassivity. There are potential values in the active range when the impedance can be interpreted as the impedance of the selective cobalt dissolution. The impedance spectra in the passive range and in the beginning of the transpassive potential range are described with the use of an equivalent circuit taking into account the existence of an oxide layer on the electrode surface.  相似文献   

9.
Inconel 690 superalloy was corroded at 700 °C and 800 °C for up to 70 h in N2-0.1% H2S gas. It corroded almost linearly with large weight gains, displaying little protectiveness. Its corrosion rates were quite fast when compared with its corrosion in air or Ar-1%SO2 gas. The formed scales were thick, fragile, and nonadherent. They consisted primarily of Cr2O3 with some NiCr2O4, Ni3S2, CrS, and Cr2S3. The H2S gas accelerated the corrosion significantly by forming nonprotective sulfides and dissolving hydrogen in the scale and in the internal corrosion zone that consisted of discrete chromium-sulfides and some oxide particles. The marker test indicated that the scales grew by the outward diffusion of metallic ions such as Ni, Cr, Fe, and Mn, whilst the internal corrosion zone thickened by the inward migration of oxygen and sulfur through the lattice, grain boundaries, and microcracks.  相似文献   

10.
The aim of this paper is to examine the effects of alcohol (1-buten-3-ol-l, 2-methyl-3-butyn-2-ol, 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, 3-methyl-1-pentyn-3-ol, 5-hexen-1-ol) on the corrosion of Al alloys. The inhibiting effect of alcohol was investigated by electrochemical current-potential curves, atomic absorption spectrometry (AAS), metal microscopy,SEM and EDS. The results showed that alcohol (1-buten-3-ol, 2-methyl-3-butyn-2-ol, 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, 3-methyl-1-pentyn-3-ol, 5-hexen-1-ol) had an inhibiting effect on the corrosion of aluminium alloys. Experimental results show that corrosion of alloys in H2SO4 solution have been effected by elements in alloys such as Cu, Zn, Mg and adsorption of alcohol on the surface of alloys in H2SO4 solution obeys Temkin adsorption isotherm. The use of alcohol in H2SO4 solution were shifted corrosion potentials (Ecor) to more negative values and acted as cathodic inhibitors on the aluminum alloys. EDS analysis of alloys displayed different intermetallic compounds on the surface of alloys, which might have changed the activity of alcohols depending on the surface morphology of alloys. This paper has showed that these alcohol inhibited corrosion of aluminium alloys in H2SO4 solution. The concentration of 20 mM alcohol was shown that above 90% inhibition was achieved, which is a rather high value.  相似文献   

11.
This study examines the effect of film thickness ranging from 230 to 404 nm on the corrosion resistance of Nb2O5 thin films grown by chemical solution deposition. The films were characterized to obtain the relationships between the deposition parameters and the most relevant physical properties (structural, surface morphology and corrosion resistance). From X-ray diffraction and XPS analyses we can conclude that the films were stoichiometric Nb2O5 and crystalline. The internal strain and morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The surface roughness, corrosion resistance were also affected by the film thickness. Electrochemical impedance spectroscopy (EIS) shows that the thicker film have higher passive and charge transfer resistance than the control samples. These results coating layer of Nb2O5 improves the corrosion resistance on an API 5L X80 steel alloy due to the formation of a film on the surface.  相似文献   

12.
White alloy, mainly containing Cu, Co, and Fe, has been successfully decomposed in HCl solution by adding H2O2. This process is discussed in this paper. Through exploratory experiments, hydrochloric acid and H2O2 solution were confirmed as the leaching system of white alloy and through a series of condition experiments the effect of HCl concentration, H2O2 addition amount, reaction temperature, reaction time, particle size, and liquid-solid ratio of the extraction are studied. The optimal leaching conditions are 5 mol/L HCl concentration, 1.85 mL H2O2/g white alloy H2O2 addition, 70°C reaction temperature, 90 min. reaction time, 100 mesh particle size, and a 5/1 liquidsolid ratio. With these conditions the extraction of Cu and Co exceeds 99.5%, and the extraction of Fe can reach 98.5%. The results show the addition of H2O2 and the introduction of Cl are very important factors to improve the extraction of metal.  相似文献   

13.
The residual protective effect of n-component mixtures of o-oxyazomethine derivatives at the corrosion of iron in 1 M H2SO4 decreases with time and an increase in temperature of the environment and increases with an increase in the polarity of substituent groups in the molecules and the inhibitor concentration in the solution. These regularities are interpreted based on the principle of the linear free-energy relation.  相似文献   

14.
In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film’s temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit’s temperatures.  相似文献   

15.
The electrochemical behavior of SAE-1020 carbon steel in 0.25 M Na2SO4 solution containing different concentrations of H2S at 90 °C was investigated using the methods of weight loss, electrochemical measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the corrosion rate of carbon steel increased significantly with the increase of H2S concentration. H2S accelerated the corrosion rate of SAE-1020 carbon steel by a promoted hydrogen evolution reaction. Severe corrosion cavities were observed on the carbon steel surface in the solutions containing H2S due to cementites stripped off from the grain boundary. The loose corrosion products formed on the steel surfaces were composed of mackinawite.  相似文献   

16.
This paper investigates the corrosion behavior of different regions of weldment of 2.25Cr-1Mo steel exposed in mixed oxidation and sulfidation (SO2 + O2) environment up to 500 h at 773 K. Microstructural investigation and characterization of oxide scales are done using SEM, TEM, and XRD. The obtained results infer that heat-affected zone corrodes faster than both base and weld metal. The reaction kinetics follows a parabolic growth rate for all regions. The higher corrosion rate of heat-affected zone is attributed to the formation of Cr23C6 secondary precipitates leading to depletion of protective inner scale of the Cr-rich oxide during welding.  相似文献   

17.
XPS data of thin (1 to 2 nm) oxide films formed by the anodic passivation of Ni-2 at % Cr and Ni-6 at % Cr alloys in 1 N H2SO4 are discussed. Thermodynamic calculations of the solid-phase chemical reaction 3NiO + 2Cr = Cr2O3 + 3Ni are carried out taking into account the changes in the surface energy at the alloy-oxide film interface along with the Gibbs energy change in the alloy oxidation reaction.  相似文献   

18.
In this study, we investigate the effect of oxide dispersion strengthening on mechanical properties by dispersion of nano-sized Ta2O5 particles in Mo-Si-B alloy. A Mo-Si-B core-shell powder consisting of two intermetallic compounds of Mo5SiB2 and Mo3Si as the core and nano-sized Mo solid solution surrounding intermetallic compounds was fabricated by chemical vapor transport. And Mo-Si-B core-shell powder with uniformly dispersed nano-sized Ta2O5 particles on the surface of a Mo solid solution shell was produced by a wet blending process with TaCl5 solution and heat treatment. Then, pressureless sintering was performed at 1400°C for 3 h under a H2 atmosphere. The hardness and fracture toughness of the Ta2O5-dispersed Mo-Si-B alloy were measured using Vickers hardness and 3-point bending tests, respectively. The Vickers hardness and fracture toughness of the fabricated Mo-Si-B-Ta2O5 alloy were more improved than that of the Mo-Si-B alloy fabricated using core-shell powder with no addition of Ta2O5 particles (Mo-Si-B alloy: 353 Hv, 13.5 MPa·√m, Mo-Si-B-Ta2O5 alloy: 509 Hv, 15.1 MPa·√m).  相似文献   

19.
The Na2O-B2O3 system is thermodynamically optimized by means of the CALPHAD method. A two-sublattice ionic solution model, (Na+1)P(O−2,BO3 −3,B4O7 −2,B3O4.5)Q, has been used to describe the liquid phase. All the solid phases were treated as stoichiometric compounds. A set of thermodynamic parameters, which can reproduce most experimental data of both phase diagram and thermodynamic properties, was obtained. Comparisons between the calculated results and experimental data are presented.  相似文献   

20.
We studied the dependence of Al2O3 coating thickness and annealing conditions on the surface morphology and electrochemical properties of Al2O3 coated LiCoO2 films. The optimum coating thickness allowing for the highest capacity retention was about 24 nm. A sample consisting of Al2O3 coated on annealed LiCoO2 film with additional annealing at 400 °C had a uniform coating layer between the coating materials and cathode films. This sample showed the best capacity retention of ∼91 % with a charge-cut off of 4.5 V after 30 cycles, while the bare cathode film showed a capacity retention of ∼32 % under the same conditions. The formation of second phases such as Co-Al-O was observed in the coating films by X-ray photoelectron spectroscopy (XPS). The Co-Al-O containing samples showed a higher initial capacity because of their smaller grain size, but less capacity retention than the Al2O3 containing samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号