首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most remote sensing algorithms for phytoplankton in inland waters aim at the retrieval of the pigment chlorophyll a (Chl a), as this pigment is a useful proxy for phytoplankton biomass. More recently, algorithms have been developed to quantify the pigment phycocyanin (PC), which is characteristic of cyanobacteria, a phytoplankton group of relative importance to inland water management due to their negative impact on water quality in response to eutrophication.We evaluated the accuracy of three published algorithms for the remote sensing of PC in inland waters, using an extensive database of field radiometric and pigment data obtained in the Netherlands and Spain in the period 2001–2005. The three algorithms (a baseline, single band ratio, and a nested band ratio approach) all target the PC absorption effect observed in reflectance spectra in the 620 nm region. We evaluated the sensitivity of the algorithms to errors in reflectance measurements and investigated their performance in cyanobacteria-dominated water bodies as well as in the presence of other phytoplankton pigments.All algorithms performed best in moderate to high PC concentrations (50–200 mg m? 3) and showed the most linear response to increasing PC in cyanobacteria-dominated waters. The highest errors showed at PC < 50 mg m? 3. In eutrophic waters, the presence of other pigments explained a tendency to overestimate the PC concentration. In oligotrophic waters, negative PC predictions were observed. At very high concentrations (PC > 200 mg m? 3), PC underestimations by the baseline and single band ratio algorithms were attributed to a non-linear relationship between PC and absorption in the 620 nm region. The nested band ratio gave the overall best fit between predicted and measured PC. For the Spanish dataset, a stable ratio of PC over cyanobacterial Chl a was observed, suggesting that PC is indeed a good proxy for cyanobacterial biomass. The single reflectance ratio was the only algorithm insensitive to changes in the amplitude of reflectance spectra, which were observed as a result of different measurement methodologies.  相似文献   

2.
Satellite imagery has proven to be a powerful tool for measuring chlorophyll a in surface waters. While this provides an estimate of total phytoplankton biomass, it does not distinguish between phytoplankton groups, many of which have functional differences and therefore affect biogeochemical cycles differently. Phytoplankton pigment analysis has been used to quantify a wide range of photosynthetic and accessory pigments, and chemotaxonomic analysis (e.g. CHEMTAX) has been used to successfully quantify functional taxonomic groups in nature based on pigment distributions. Here, we combine CHEMTAX analysis with satellite-derived distributions of specific phytoplankton pigments to describe the distributions of particular components of the phytoplankton community in the northeast coast of the United States from space. The spatial and seasonal variations in phytoplankton community structure elucidated through satellite remote sensing methods generally agreed with observations of abundance estimates of cell counts. Diatoms were generally the most abundant phytoplankton in this region, especially during Winter-Spring and in the inner shelf, but phytoplankton populations shifted to increasing abundance of other taxa during Summer, especially offshore. While still preliminary, satellite-derived taxa-specific information with proper regional controls holds promise for providing information on phytoplankton abundance to a taxonomic group level which would greatly improve our understanding of the impacts of human activity and climate change on ecosystems.  相似文献   

3.
Water spectral absorption characteristics of eutrophic lakes are largely different from those of ocean and coastal waters. We therefore studied them with the aim of establishing an analytical model for inland water colour, to be used in remote sensing. Field measurements were carried out on 16 and 17 August 2006 (summer), 5 and 6 November 2006 (winter), and 29 and 30 March 2007 (spring) at 15 stations in northern Lake Taihu (China). Chromophoric dissolved organic matter (CDOM) absorption coefficients (a CDOM) are higher in summer than in spring and winter, with the ratios of a CDOM in spring, summer and winter being approximately 1 : 4.0 : 1.2 at both UV‐C and UV‐B. The spectral slope S CDOM values change with wavelength and season, and covary with CDOM concentration, as shown by regression analysis. For the CDOM absorption spectrum in the wavelength region 500–700 nm (important for water colour remote sensing), a linear method simulates better than an exponential method. Seasonal variations in non‐algal particulate (NAP) absorption (a NAP) at blue, green and red wavelengths show better consistency, in the order winter>spring>summer. The average S NAP is 0.0065±0.0009 nm?1, which is lower than that in other types of waters. Phytoplankton absorption (a ph) peak height changes with the season, with the pattern summer>winter>spring, and phytoplankton absorption spectra can be expressed with high accuracy by a quadratic model. CDOM absorption contributions in the three seasons are low compared to phytoplankton and NAP.  相似文献   

4.
Increased frequency and extent of potentially harmful blooms in coastal and inland waters world-wide require the development of methods for operative and reliable monitoring of the blooms over vast coastal areas and a large number of lakes. Remote sensing could provide the tool. An overview of the literature in this field suggests that operative monitoring of the extent of some types of blooms (i.e. cyanobacteria) is relatively straightforward. Operative monitoring of inland waters is currently limited to larger lakes or using airborne and hand-held remote sensing instruments as there are no satellite sensors with sufficient spatial resolution to provide daily coverage. Extremely high spatial and vertical variability in biomass during blooms of some phytoplankton species and the strong effects of this on the remote sensing signal suggest that water sampling techniques and strategies have to be redesigned for highly stratified bloom conditions, especially if the samples are collected for algorithm development and validation of remote sensing data. Comparing spectral signatures of different bloom-forming species with the spectral resolution available in most satellites and taking into account variability in optical properties of different water bodies suggests that developing global algorithms for recognizing and quantitative mapping of (harmful) algal blooms is questionable. On the other hand some authors cited in the present paper have found particular cases where satellites with coarse spectral and spatial resolution can be used to recognize phytoplankton blooms even at species level. Thus, the algorithms and methods to be used depend on the optical complexity of the water to which they will be applied. The aim of this paper is to summarize different methods and algorithms available in an attempt to assist in selecting the most appropriate method for a particular site and problem under investigation.  相似文献   

5.
Different scales of hydrological and biological patterns of the Bay of Biscay are assessed using space‐borne and airborne optical remote sensing data, field measurements and a 3‐dimensional biophysical model. If field measurements provide accurate values on the vertical dimension, ocean colour data offer frequent observations of surface biological patterns at various scales of major importance for the validation of ecosystem modelling. Although the hydro‐biological model of the continental margin reproduces the main seasonal variability of surface biomass, the optical remote sensing data have helped to identify low grid resolution, input inaccuracies and neglect of swell‐induced erosion mechanism as model limitations in shallow waters. Airborne remote sensing is used to show that satellite data and field measurements are unsuitable for comparison in the extreme case of phytoplankton blooms in patches of a few hundred metres. Vertically, the satellite observation is consistent with near surface in situ measurements as the sub‐surface chlorophyll maximum usually encountered in summer is not detected by optical remote sensing. A mean error (δC/C) of 50.5% of the chlorophyll‐a estimate in turbid waters using the SeaWiFS‐OC5 algorithm allows the quantitative use of ocean colour data by the coastal oceanographic community.  相似文献   

6.
In order to acquire inherent optical properties to serve the lake water colour/quality remote sensing in Taihu Lake 67 samples were distributed almost all over the lake. Surface water samples were collected and returned to the laboratory for the subsequent processing and analysis. In the laboratory, the absorptions due to the total particulate matter, non‐algal particulate matter, phytoplankton pigment, and CDOM, together with their concentrations were measured and/or calculated, respectively. Then their absorption properties were analysed and compared with those of other lake waters and/or coastal/open waters. Some different and similar characteristics were uncovered. On the one hand, it provides not only a solid basement for the Taihu Lake water colour/quality remote sensing with semi‐analytical/analytical approach but also a typical case for inherent optical properties of case two water especially for inland freshwater lakes. On the other, it is very helpful to improve the practical and intensive application and development of remote sensing in monitoring lake water quality.  相似文献   

7.
Optical measurements including remote sensing provide a potential tool for the identification of dominant phytoplankton groups and for monitoring spatial and temporal changes in biodiversity in the upper ocean. We examine the application of an unsupervised hierarchical cluster analysis to phytoplankton pigment data and spectra of the absorption coefficient and remote-sensing reflectance with the aim of discriminating different phytoplankton assemblages in open ocean environments under non-bloom conditions. This technique is applied to an optical and phytoplankton pigment data set collected at several stations within the eastern Atlantic Ocean, where the surface total chlorophyll-a concentration (TChla) ranged from 0.11 to 0.62 mg m− 3. Stations were selected on the basis of significant differences in the ratios of the two most dominant accessory pigments relative to TChla, as derived from High Performance Liquid Chromatography (HPLC) analysis. The performance of cluster analysis applied to absorption and remote-sensing spectra is evaluated by comparisons with the cluster partitioning of the corresponding HPLC pigment data, in which the pigment-based clusters serve as a reference for identifying different phytoplankton assemblages. Two indices, cophenetic and Rand, are utilized in these comparisons to quantify the degree of similarity between pigment-based and optical-based clusters. The use of spectral derivative analysis for the optical data was also evaluated, and sensitivity tests were conducted to determine the influence of parameters used in these calculations (spectral range, smoothing filter size, and band separation). The results of our analyses indicate that the second derivative calculated from hyperspectral (1 nm resolution) data of the phytoplankton absorption coefficient, aph(λ), and remote-sensing reflectance, Rrs(λ), provide better discrimination of phytoplankton pigment assemblages than traditional multispectral band-ratios or ordinary (non-differentiated) hyperspectral data of absorption and remote-sensing reflectance. The most useful spectral region for this discrimination extends generally from wavelengths of about 425-435 nm to wavelengths within the 495-540 nm range, although in the case of phytoplankton absorption data a broader spectral region can also provide satisfactory results.  相似文献   

8.
The empirical approach of remote sensing has a proven capability to provide timely and accurate information on inland and near-coastal transitional waters. This article gives a thorough review of empirical algorithms for quantitatively estimating a variety of parameters from space-borne, airborne and in situ remote sensors in inland and transitional waters, including chlorophyll-a, total suspended solids, Secchi disk depth (z SD), turbidity, absorption by coloured dissolved organic matter (a CDOM) and other parameters, for example, phycocyanin. Current remote-sensing instruments are also reviewed. The theoretical basis of the empirical algorithms is given using fundamental bio-optical theory of the inherent optical properties (IOPs). Bands, band ratios and band arithmetic algorithms that could be used to produce common biogeophysical products for inland/transitional waters are identified. The article discusses the potential role that empirical algorithms could play alongside more advanced model-based algorithms in the future of water remote sensing, especially for near real-time operational monitoring systems. The article aims to describe the current status of empirical remote sensing in inland and near-coastal transitional waters and provide a useful reference to workers. It does not cover ‘inversion’ algorithms.  相似文献   

9.
Among microphytobenthic species (unicellular algae and cyanobacteria), benthic diatoms are often the most common photosynthetic organisms colonizing shallow marine environment such as an intertidal flat. As such areas, particularly mudflats of limited access for point sampling, remote sensing techniques have the potential to map diatom biomass. This study used two monospecific cultures of the benthic diatoms Navicula ramosissima and Entomoneis paludosa, isolated from mudflats in Bourgneuf Bay (France), to obtain a biomass range. Exponential and senescent stages of microalgal growth were also tested. The objective was to relate the spectral reflectance obtained by spectroradiometry to the composition and amount of principal and accessory pigments measured by high-performance liquid chromatography (HPLC). Analysis of pigments vs. chlorophyll a ratios revealed differences between these two diatom species, mainly due to fucoxanthin and diadinoxanthin. These interspecific variations among the class of Bacillariophyceae were also detected by spectroradiometry. No differences were observed between the two growth stages, and cell senescence had no effects on spectral properties. The chlorophyll pigments used to establish a relationship between diatom biomass and spectral reflectance gave the most interesting results for an absorption band at 632 nm corresponding to chlorophyll a and chlorophyll c. This band, contrary to that at 673 nm related to chlorophyll a only and traditionally used for biomass estimations in green plants, provided the largest range of variations and was not saturated at a high biomass concentration.  相似文献   

10.
Chlorophyll-a (Chla) concentrations and ‘water-leaving’ reflectance were assessed along transects in Keweenaw Bay (Lake Superior) and in Green Bay (Lake Michigan) (two of the Laurentian Great Lakes, USA), featuring oligotrophic (0.4–0.8 mg Chla m? 3) and eutrophic to hyper-eutrophic waters (11–131 mg Chla m? 3), respectively. A red-to-NIR band Chla retrieval algorithm proved to be applicable to Green Bay, but gave mostly negative values for Keweenaw Bay. An alternative algorithm could be based on Chla fluorescence, which in Keweenaw Bay was indicated by enhanced reflectance near 680 nm. Bands 7, 8 and 9 of the Medium Resolution Imaging Spectrometer (MERIS) have been specifically designed to detect phytoplankton fluorescence in coastal waters. A quite strong linear relationship was found between Chla concentration and fluorescence line height (FLH) computed with these MERIS bands. The same relationship held for observations on oligotrophic waters elsewhere, but not for Green Bay, where the FLH diminished to become negative as Chla increased. The remote sensing application of the algorithms could be tested because a MERIS scene was acquired coinciding with the day of the field observations in Keweenaw Bay and one day after those in Green Bay. For Green Bay the pixel values from the red-to-NIR band algorithm compared well to the steep Chla gradient in situ. This result is very positive from the perspective of satellite use in monitoring eutrophic inland and coastal waters in many parts of the world. Implementation of the FLH relationship in the scene of Keweenaw Bay produced highly variable pixel values. The FLH in oligotrophic inland waters like Lake Superior appears to be very close to or below the MERIS detection limit. An empirical algorithm incorporating three MERIS bands in the blue-to-green spectral region might be used as an alternative, but its applicability to other regions and seasons remains to be verified. Moreover, none of the algorithms will be suitable for mesotrophic water bodies. The results indicate that Chla mapping in oligotrophic and mesotrophic areas of the Great Lakes remains problematic for the current generation of satellite sensors.  相似文献   

11.
Accurate assessment of phytoplankton chlorophyll a (Chla) concentration in turbid waters by means of remote sensing is challenging due to optically complexity and significant variability of case 2 waters, especially in inland waters with multiple optical types. In this study, a water optical classification algorithm is developed, and two semi-analytical algorithms (three- and four-band algorithm) for estimating Chla are calibrated and validated using four independent datasets collected from Taihu Lake, Chaohu Lake, and Three Gorges Reservoir. The optical classification algorithm is developed using the dataset collected in Taihu Lake from 2006 to 2009. This dataset is also used to calibrate the three- and four-band Chla estimation algorithms. The optical classification technique uses remote sensing reflectance at three bands: Rrs(G), Rrs(650), and Rrs(NIR), where G indicates the location of reflectance peak in the green region (around 560 nm), and NIR is the location of reflectance peak in the near-infrared region (around 700 nm). Optimal reference wavelengths of the three- and four-band algorithm are located through model tuning and accuracy optimization. The three- and four-band algorithm accuracy is further evaluated using other three independent datasets. The improvement of optical classification in Chla estimation is revealed by comparing the performance of the two algorithms for non-classified and classified waters.Using the slopes of the three reflectance bands, the 138 reflectance spectra samples in the calibration dataset are classified into three classes, each with a specific spectral shape character. The three- and four-band algorithm performs well for both non-classified and classified waters in estimating Chla. For non-classified waters, strong relationships are yielded between measured and predicted Chla, but the performance of the two algorithms is not satisfactory in low Chla conditions, especially for samples with Chla below 30 mg m− 3. For classified waters, the class-specific algorithms perform better than for non-classified waters. Class-specific algorithms reduce considerable mean relative error from algorithms for non-classified waters in Chla predicting. Optical classification makes that there is no need to adjust the optimal position to estimate Chla for other waters using the class-specific algorithms. The findings in this study demonstrate that optical classification can greatly improve the accuracy of Chla estimation in optically complex waters.  相似文献   

12.
Spectral absorption properties of particulate and dissolved matter were determined for Lake Erie waters in order to investigate the natural variability of the absorption coefficients required as inputs to optical models for converting satellite observations of water colour into water quality information. Particulate absorption measured using the quantitative filter technique yielded absorption spectra containing a fraction that could not be attributed to phytoplankton pigments, living heterotrophs, mineral sediments, or organic detritus but were indicative of additional absorption by a fraction of dissolved organic matter present in colloidal and/or particle-bound form. Erroneously high phytoplankton absorption coefficients measured at short wavelengths using the filter technique suggested that this particle-bound DOM is removed along with phytoplankton pigments during bleaching by sodium hypochlorite and as such is mistakenly incorporated into the phytoplankton absorption signal. Observations suggest that the selective sorption of fractions of DOM onto suspended particles may be responsible for significant variability in the absorption coefficients of particulate and dissolved matter and may be an important contributor to the total spectral absorption signals in Lake Erie waters. This reservoir of coloured organic matter, which to date has not been seriously considered in the optical properties of coastal and inland waters, may produce significant uncertainties in the parameterization of optical models and the interpretation of in situ and remotely sensed aquatic colour signals.  相似文献   

13.
For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/m3, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote-sensing reflectance using a newly developed ocean-color algorithm. The derived spectra were then compared with those measured from water samples using the filter-pad technique, and an average difference of 21.4% was obtained. These results demonstrate that the inversion algorithm worked quite well for the coastal waters observed and suggest a potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments.  相似文献   

14.
Estimating near-surface moisture conditions from the reflectance spectra (400-2500 nm) of Sphagnum moss offers great opportunities for the use of remote sensing as a tool for large-scale detailed monitoring of near-surface peatland hydrological conditions. This article investigates the effects of changes in near-surface and surface moisture upon the spectral characteristics of Sphagnum moss. Laboratory-based canopy reflectance data were collected from two common species of Sphagnum subjected to drying and subsequent rewetting. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands and two biophysical indices (REIP and the chlorophyll index) were correlated with measures of near-surface moisture. All spectral indices tested were significantly correlated with near-surface moisture (with r between 0.27 and 0.94). The strongest correlations were observed using indices developed from the NIR liquid water absorption features (fWBI980 and fWBI1200). However, a hysteretic response was observed in both NIR indices when the canopies were re-hydrated, a finding which may have implications for the timing of remote sensing image acquisition. The Moisture Stress Index (MSI), developed from the SWIR liquid water absorption feature also showed strong correlations with near-surface wetness although the range of moisture conditions over which the index was able to detect change was highly dependent on Sphagnum species. Of the biophysical spectral indices tested (REIP and the chlorophyll index), the most significant relationships were observed between the chlorophyll index and near-surface wetness. All spectral indices tested were species specific, and this is attributed to differences in canopy morphology between Sphagnum species. The potential for developing estimations of surface and near-surface hydrological conditions across northern peatlands using remote sensing technology is discussed.  相似文献   

15.
Abstract

Upwelling radiance from pure cultures and natural populations of freshwater algae is examined. The effects of changes in the vertical distribution of the algae on the upwelling radiance are also explored. The different algae studied were spectrally very similar. The volume reflectance for any given chlorophyll concentration differed between the Phyla studied. This appeared to be due to the colonial nature of some species. Higher chlorophyll concentrations resulted in higher reflectance in all but the blue wavelengths, and correlations between reflectance in the near-infrared and Ln lorophyll were the highest. This suggests that remote sensing of algae in inland waters should be based on increased scattering by the cells and not increased absorbtion by chlorophyll.  相似文献   

16.
Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities. Remote sensing is widely applied to monitor the trophic state of these waters. This study investigates the performance of near infrared-red models for the remote estimation of chlorophyll-a concentrations in turbid productive waters and evaluates several near infrared-red models developed within the last 34 years. Three models were calibrated for a dataset with chlorophyll-a concentrations from 0 to 100 mg m−3 and validated for independent and statistically different datasets with chlorophyll-a concentrations from 0 to 100 mg m−3 and 0 to 25 mg m−3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and MODerate resolution Imaging Spectroradiometer (MODIS). The MERIS two-band model estimated chlorophyll-a concentrations slightly more accurately than the more complex models, with mean absolute errors of 2.3 mg m−3 for chlorophyll-a concentrations from 0 to 100 mg m−3 and 1.2 mg m−3 for chlorophyll-a concentrations from 0 to 25 mg m−3. Comparable results from several near infrared-red models with different levels of complexity, calibrated for inland and coastal waters around the world, indicate a high potential for the development of a simple universally applicable near infrared-red algorithm.  相似文献   

17.
Asterionella glacialis Castracane, a diatom species of marine phytoplankton, bloomed in the coastal waters of the northwestern Bay of Bengal during 24 March to 4 April 2004. This species dominated by 99% in cell concentration on 26 March 2004. During the bloom period, phytoplankton population density increased by three orders of magnitude, while the chlorophyll a concentration increased by 70 to 80 times relative to the pre‐bloom situation. The blooming was associated with coastal upwelling and influenced water quality. Corresponding to the blooming period, satellite sensor‐derived products of sea surface temperature (SST) and chlorophyll a data were analysed to understand the coverage and dynamics of phytoplankton in the area.  相似文献   

18.
Quantitative analysis of coastal marine benthic communities enables to adequately estimate the state of coastal marine environment, provide better evidence for environmental changes and describe processes that are conditioned by anthropogenic forces. Remote sensing could provide a tool for mapping bottom vegetation if the substrates are spectrally resolvable. We measured reflectance spectra of green (Cladophora glomerata), red (Furcellaria lumbricalis), and brown (Fucus vesiculosus) macroalgae and used a bio-optical model in estimating whether these algae distinguish optically from each other, from sandy bottom or deep water in turbid water conditions of the Baltic Sea. The simulation was carried out for three different water types: (1) CDOM-rich coastal water, (2) coastal waters not directly impacted by high CDOM discharge from rivers but with high concentration of cyanobacteria, (3) open Baltic waters. Our modelling results indicate that the reflectance spectra of C. glomerata, F. lumbricalis, F. vesiculosus differ from each other and also from sand and deep water reflectance spectra. The differences are detectable by remote sensing instruments at spectral resolution of 10 nm and SNR better than 1000:1. Thus, the lowest depth limits where the studied macroalgae grow do not exceed the depth where such remote sensing instruments could potentially detect the spectral differences between the studied species.  相似文献   

19.
We have developed a model linking phytoplankton absorption to phytoplankton size classes (PSCs) that uses a single variable, the optical absorption by phytoplankton at 443 nm, aph(443), which can be derived from the inversion of ocean colour data. The model is based on the observation that the absolute value of aph(443) co-varies with the spectral slope of phytoplankton absorption in the range of 443-510 nm, which is also a characteristic of phytoplankton size classes. The model when used for analysis of SeaWiFS global data, showed that picoplankton dominated ~ 79.1% of surface waters, nanoplankton ~ 18.5% and microplankton the remainder (2.3%). The N. and S. Atlantic and the N. and S. Pacific Oceans showed seasonal cycles with both micro and nanoplankton increasing in spring and summer in each hemisphere, while picoplankton, dominant in the oligotrophic gyres, decreased in the summer. The PSCs derived from SeaWiFS data were verified by comparing contemporary 8-day composites with PSCs derived from in situ pigment data from quasiconcurrent Atlantic Meridional Transect cruises.  相似文献   

20.
Satellite remote sensing of ocean colour is the only method currently available for synoptically measuring wide-area properties of ocean ecosystems, such as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical and ecological methods have been established that use satellite data to identify and differentiate between either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). In this study, several of these techniques were evaluated against in situ observations to determine their ability to detect dominant phytoplankton size classes (micro-, nano- and picoplankton). The techniques are applied to a 10-year ocean-colour data series from the SeaWiFS satellite sensor and compared with in situ data (6504 samples) from a variety of locations in the global ocean. Results show that spectral-response, ecological and abundance-based approaches can all perform with similar accuracy. Detection of microplankton and picoplankton were generally better than detection of nanoplankton. Abundance-based approaches were shown to provide better spatial retrieval of PSCs. Individual model performance varied according to PSC, input satellite data sources and in situ validation data types. Uncertainty in the comparison procedure and data sources was considered. Improved availability of in situ observations would aid ongoing research in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号