首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present work, 50 vol% Sip/Al–20Si composite was prepared by hot-pressed sintering technology. Si particles were uniformly distributed in the Sip/Al–20Si composite, and only the presence of Si and Al phases were detected by XRD analysis. Dislocations, twins, and stacking faults were found in the Si particles. Several Si phases were found to be precipitated between Al matrix and Si particles. Si/Al interface was clean, smooth, and free from interfacial product. HRTEM indicated that the Si/Al interface was well bonded. The average CTE and thermal conductivity (TC) of Sip/Al–20Si composite were 11.7 × 10?6/°C and 118 W/(m K), respectively. Sip/Al–20Si composite also demonstrated high mechanical properties (bending strength of 386 MPa). Thus, the comprehensive performance (low density and CTE, high TC, and mechanical properties) makes the Sip/Al–20Si composite very attractive for application in electron packaging.  相似文献   

2.
Abstract

A novel in situ reactive technique has been employed for preparing 2·0 wt-%TiB2/60Si–Al composite. The kinetic equations and the Arrhenius type equation were applied to compute the coarsening rate constant and the activation energy for grain growth for the composite when it was heated at semisolid state for partial remelting. Experimental results have shown that the in situ TiB2 particles can refine effectively the primary Si phase and restrain the Si phase growth. The cubic coarsening rate constant for the composite was computed to be in the range of 75–148 μm3 min?1 at temperatures in the range of 600–700°C, which was much less than that for the 60Si–Al alloy (1323–4523 μm3 min?1). The value of activation energy for grain growth for the composite was about twice of that for the 60Si–Al alloy. The composite exhibited a higher thermal stability than that of the 60Si–Al alloy, suggesting that the in situ TiB2 particles can effectively pin the grain boundaries and arrest the migration of liquid film in the semisolid state of the composite.  相似文献   

3.
Fully dense carbon fiber-reinforced copper and aluminum matrix (Cu–CF and Al–CF) composites were fabricated by hot press without the need for an interfacial chemical compound. With 30 vol% carbon fiber, the thermal expansion coefficients (TECs) of pure Cu and Al were decreased to 13.5 × 10?6 and 15.5 × 10?6/K, respectively. These improved TECs of Cu–CF and Al–CF composites were maintained after 16 thermal cycles; moreover, the TEC of the 30 vol% Cu–CF composite was stable after 2500 thermal cycles between ?40 and 150 °C. The thermal strain caused by the TEC mismatch between the matrix and the carbon fiber enables mechanical enhancement at the matrix/carbon fiber interface and allows conservation of the improved TECs of Cu–CF and Al–CF composites after thermal cycles.  相似文献   

4.
Abstract

Al with 55 and 75 vol.-%SiC powders were free mechanically mixed or ball milled as feedstock. The powder feedstock was deposited onto a graphite substrate to form near net shape of Al/SiC composites by air plasma spraying. The pores and the gaps at the Al/SiC interface as well as at the boundary of Al grains exist extensively in the as sprayed composites. Coefficient of thermal expansion (CTE) of the sprayed composites was measured in the temperature range of 25–300°C. The composites plasma sprayed with Al–75SiC powder feedstock can reach a low CTE value of 8 × 10?6 °C?1. The effect of pore on the CTE of the composites has been discussed. The gap at Al/SiC interface has an influence on thermal expansion behaviour only at lower test temperatures. Reduction and elimination of the gap with temperature can offset the thermal expansion of the as sprayed composites, resulting in lower CTE at the beginning of the CTE test. Roughly quantitative consideration of the effect of the interfacial gaps between Al and SiC on CET was given. Linear rule of mixture (ROM), Turner and Kerner's models were used to estimate the CTE of the sprayed composites. It was found that ROM and Kerner's model give closer CTE prediction for the present composites.  相似文献   

5.
A chromium carbide coating was synthesized onto graphite fibers by molten salts method to improve the interfacial bonding and thermal properties of short graphite fiber/Al composites which were fabricated by vacuum pressure infiltration technique. The graphite fiber/Al composites with different thicknesses of chromium carbide coatings were prepared through varying plating times to investigate the influence of chromium carbide layer on the microstructures and thermal properties of the composites. The combined Maxwell–Garnett effective medium approach and acoustic mismatch model schemes were used to theoretically predict thermal conductivities of the composites. The results indicated that the chromium carbide coating formed on graphite fiber surface in molten salts consists mainly of the Cr7C3 phase. The Cr7C3-coating layer with plating time of 60 min and thickness of 0.5 μm was found to be most effective in improving the interfacial bonding and decreasing the interfacial thermal resistance between graphite fiber and aluminum matrix. The 40 vol% Cr7C3-coated graphite fiber/Al composite with Cr7C3 thickness of 0.5 μm exhibited 45.4 % enhancement in in-plane thermal conductivity of 221 W m?1 K?1 compared to that of uncoated composite, as well as the coefficient of thermal expansion of 9.4 × 10?6 K?1, which made it as very interesting material for thermal management applications.  相似文献   

6.
Butyl rubber–Ba(Zn1/3Ta2/3)O3 (BR–BZT) composites and butyl rubber–silica (BRS) composites were prepared by sigma mixing. The dielectric properties at 1 MHz and 5 GHz of BR–BZT and BRS composites were investigated as a function of ceramic loading and were found to be improved with filler loading. For a optimum BZT loading of 0.26 vf, the BR–BZT composite have εr = 4.88, tanδ = 0.0022 (at 5 GHz), coefficient of thermal expansion (CTE) = 112 ppm/°C, thermal conductivity (TC) = 0.30 Wm?1 K?1 and water absorption = 0.047 vol%. The BRS composites attained εr = 2.79, tanδ = 0.0039 (at 5 GHz), CTE = 102 ppm/°C, TC = 0.40 Wm?1 K?1 and water absorption = 0.078 vol% for the same loading of silica. The stress–strain curves of both composites showed good flexibility of the composite. The measured relative permittivity and TC of both composites were compared with different theoretical approaches.  相似文献   

7.
The effects of adding calcium hydroxide (Ca(OH)2) to a copper–CF (30 %) composite (Cu–CF(30 %)) were studied. After sintering at 700 °C, precipitates of calcium oxide (CaO) were included in the copper matrix. When less than 10 % of Ca(OH)2 was added, the thermal conductivity was similar to or higher than the reference composite Cu–CF(30 %). A thermal conductivity of 322 W m?1 K?1 was measured for the Cu–Ca(OH)2(3 %)–CF(30 %) composite. The effects of heat treatment (400, 600, and 1000 °C during 24 h) on the composite Cu–Ca(OH)2(3 %)–CF(30 %) were studied. At the lower annealing temperature, CaO inside the matrix migrated to the interface of the copper matrix and the CF. At 1000 °C, the formation of the interphase calcium carbide (CaC2) at the interface of the copper and CFs was highlighted by TEM observations. Carbide formation at the interface led to a decrease in both thermal conductivity (around 270 W m?1 K?1) and the coefficient of thermal expansion (CTE (10.1 × 10?6 K?1)).  相似文献   

8.
Abstract

The aluminium composite foams reinforced by different volume fractions of SiC particles were manufactured with the direct foaming route of melt using different contents of CaCO3 foaming agent. The density of produced foams changed from 0·43 to 0·76 g cm?3. The microstructural features and compressive properties of the Al/SiCp composite foams were investigated. Compressive stress–strain curve of Al/SiCp composite foams is not smooth and exhibits some serrations. At the same relative density of composite foams, the plateau stress of the composite foams increases with increasing volume fraction of SiCp and decreasing weight percentage of CaCO3. The relation between plateau stress, relative density, weight percentage of CaCO3 and SiCp volume fraction of Al/SiCp composite foams with a given particle size was investigated.  相似文献   

9.
A combination of low coefficient of thermal expansion (CTE) and decent thermal conductivity (TC) is the reason for the Al-high vol% Si system to become popular for electronic packaging material. In the present work, two process routes, firstly conventional powder metallurgy and then spark plasma sintering (SPS) were utilized for the fabrication of Al-20-60 wt.% Si composites. In addition, effect of small fraction of CNT addition on the CTE of Al-20?wt% Si was studied. Effect of process parameters on the consolidation of the composites in terms of densification, microstructure evolution along with fractographic analysis and strength was studied. CTE and TC of the sintered composites were measured and correlated with the densification, percentage of Si and morphologies of the sintered products. Overall, better densification could be achieved in SPS and the Al-30%Si and Al-40%Si composites SPSed at 550?°C showed average CTE values of 14.52?×?10?6/K and 13.36?×?10?6/K, respectively, in the temperature range of 30–200?°C, which were better than some of the existing alloys with higher Si content. Simultaneously, TC values were 114.4?W/mK and 107.12?W/mK, respectively, for the above two SPSed composites.  相似文献   

10.
Abstract

The peel behaviour of diffusion bonded joints between Al–Li 8090 alloy sheet depends upon joint geometry, sheet thickness, and the local stiffness of the bonded joint. The local stiffness was increased by bonding 8090 metal matrix composite onto the faces of the joint. At the superplastic forming temperature of 530°C the peel strengths of solid state or liquid phase diffusion bonded joints at peak load were increased from 5–7 N mm?1 to >8 N mm?1. This led to superplastic deformation of the sheet without peel fracture at the bonded joint. After air cooling and aging, the corresponding room temperature peel strengths were 174–252 N mm?1, compared with 30–54 N mm?1 for an unstiffened joint, an increase by a factor of 3·2–8·4. It was concluded that stiffened bonded joints would enable multiple thin sheet structures to be manufactured in Al–Li 8090 alloy via a diffusion bonding/superplastic forming (DB/SPF) technique. A DB/SPF technique for a three sheet structure is described.

MST/1687  相似文献   

11.
Zhang  Shihao  Hou  Qinglin  Fu  Zhixiang  Zhang  Weili  Jiang  Haiyun 《Journal of Materials Science》2022,57(3):1796-1809

Multiphase particle-reinforced strategy shows promise for efficiently improving the comprehensive properties of aluminum matrix composites (AMCs) such as thermophysical and mechanical properties. In this work, AMC reinforced with β-eucryptite (LAS), and silicon carbide (SiC) particles were successfully prepared via a powder forging process. The microstructure morphology, interface compatibility, and coefficient of thermal expansion (CTE) of these composites were evaluated. Microstructural characterization illustrated that the co-effect of SiC and LAS resulted in a discontinuous phase with a microporous and deformation-free structure. The microporous structure of these composites was conducive for inward expansion and the elimination of internal stress, effectively limiting the outward thermal expansion behavior of the Al alloys. Moreover, SiC and LAS exhibited tight interfacial bonds with the Al grains, enhancing interfacial bonding strength. These composites provided practical and robust tensile stress that limited the thermal expansion of the Al matrix under heating. A fine Al grain size (53.5 nm) and low micro-strain (0.4?×?10–4) were obtained with increasing LAS content. Consequently, the composites achieved a low CTE of 17.27?×?10–6 K?1 at 500 °C. The experimental CTE values were also compared with theoretical values calculated by a rule of mixture model to confirm that the excellent interfacial bonding between the LAS and SiC reinforcements and the Al matrix imposed an effective constraint on matrix expansion.

Graphical abstract
  相似文献   

12.
Cubic boron nitride (cBN) has outstanding mechanical and thermal properties. The previous research focused on mechanical properties, to data, the thermal property of cBN has rarely been reported. In this work, a wide range of aluminum/cubic boron nitride (Al/cBN) composites were fabricated by pressure infiltration at 5.0 GPa and 960–1600 °C. The microstructure, phase composition, thermal conductivity and coefficient of thermal expansion of the Al/cBN composites were investigated. The results showed that a maximum thermal conductivity of 266 W/mK and the coefficient of thermal expansion of 4–6 × 10?6 K?1 which matches well to semiconductors, indicating that the Al/cBN composites are promised heat sink materials of high efficiency for the wide band gap semiconductors.  相似文献   

13.
Abstract

An experiment was carried out to verify a simplified theory of porosity formation during the unidirectional solidification of Al–4·5 wt-%Cu alloy in cylindrical moulds 1·5 and 2·4 cm in diameter. For specimens 1·5 cm in diameter, a higher thermal gradient G and a lower solidus velocity Vs at low drawing speeds are measured compared with the specimens 2·4 cm in diameter, while this difference tends to be reversed at high drawing speeds. The experimental results also conjirm the roles of interdendritic fluid flow and surface tension effects in the formation of porosity. The porosity content tends to increase with increasing local solidification time or a decrease in G0·4/Vs1·6when this parameter is less than about 1·0 K0·4min1·6cm?2.

MST/3122  相似文献   

14.
Abstract

Static and cyclic creep tests were carried out in tension at 573–673 K on a 20 vol.-%SiC whisker reinforced aluminium (Al/SiCw ) composite. The Al/SiCw composite exhibited an apparent stress exponent of 18·1–19·0 at 573–673 K and an apparent activation energy of 325 kJ mol-1 for static creep, whereas an apparent stress exponent of 19·6 at 623 K and an apparent activation energy of 376 kJ mol-1 were observed for cyclic creep. A cyclic creep retardation (CCR) behaviour was observed for the Al/SiCw composite. The steady state creep rate for cyclic creep was three orders of magnitude lower than that for static creep. Furthermore, the steady state creep rates of the composite tended to decrease continuously with increasing percentage unloading amount. The static creep data of the Al/SiCw composite were rationalised by the substructure invariant model with a true stress exponent of 8 together with a threshold stress. The CCR behaviour can be explained by the storage of anelastic strain delaying non-recoverable creep during the onload cycles.  相似文献   

15.
A novel ternary alloy with the composition of Al–20Mg–2Zr (wt-%) was prepared by close coupled gas atomisation. The thermal oxidation behaviour of the powder was examined by thermogravimetry–differential thermal analysis. The results showed that the oxidation proceeded in single step, and the violent exothermic reaction occurred after 900°C was almost complete. The activation energy of the oxidation was ~250?kJ?mol??1, and the frequency factor was ~1.47?×?1011?s??1 and 3.36?×?1011?s??1 using the Kissinger and Ozawa method respectively. The special feature of the pulsed oxidation was explained by the melt dispersion oxidation mechanism. The excellent thermal reactivity exhibited by the Al–20Mg–2Zr powder suggested that this novel alloy could become one of the most promising materials in energetic applications.  相似文献   

16.
Abstract

Composite materials based on aluminium are used in different fields where weight, thermal expansion, and thermal stability are key requirements. The aim of the present study was to develop a universal method and scientific approach for evaluating the design of lightweight, Al matrix composites with low coefficients of thermal expansion (CTE) and high dimensional stability, and to produce such composites using the vacuum plasma spray (VPS)process. The methodology is general and could be applied to other composite systems. The VPS-produced Al and Al alloy 6061 based composites were reinforced with a variety of ceramic particles including Si3N4, B4C, TiB2, and 3Al2O3.2SiO2. These composites have low CTE values ((12–13)×10-6 K-1), similar to that of steel, and high dimensional stability (capable of keeping dimensions stable with changes in temperature). They have low porosity (98–99%dense) and a uniform distribution of the strengthening particles. Hot rolling of the VPS-formed composites, followed by heat treatment, resulted in a significant improvement in the mechanical properties. Deformed and heat treated 6061 based composites, containing 20 wt-%TiB2 and 40 wt-%3Al2O3?2SiO2, showed excellent mechanical properties (ultimate tensile strength 210–250 MPa, elongation >4%).  相似文献   

17.
Abstract

A reversible photorefractive grating and an irreversible local photo-induced aggregation grating were observed in a low glass transition temperature polymer composite poly(N-vinylcarbazole): 2,4,7-trinitro-9-fluroenone: N-ethylcarbazol: N-(4-nitrophenyl)-(l)-prolinol. Two gratings were distinguished by using the two-beam coupling (TBC) experiment and the four-wave mixing experiment. For photorefractive grating, the TBC coefficient was measured to be 140 cm?1 at an applied electric field of E0 = 85V/μm, corresponding to a photorefractive grating of 3.6 × 10?3. The photo-induced aggregation grating was measured to be about 7 × 10?3.  相似文献   

18.
In this paper, a SiCP preform was prepared by Powder Injection Molding (PIM), and the melting aluminum was injected into the SiCP preform by the pressure infiltration method to manufacture an electronic package box of SiCP (65%)/Al composites. SiCP (65%)/Al composite prepared by pressure infiltration has full density and a homogeneous microstructure. The relative density of the composite is higher than 99%, the thermal expansion coefficient and thermal conductivity of the composite are 8.0×10−6/K and nearly 130 W/(m · K) at room temperature, respectively, which meet the requirements of electronic packaging. Translated from Journal of Acta Materiae Compositae Sinica, 2006, 23(6): 109–113 (in Chinese)  相似文献   

19.
Abstract

A continuous SiC fibre reinforced Ti–6Al–4V composite was diffusion bonded in transient liquid phase to Ti–6Al–4V alloy plate using Ti–Cu–Zr amorphous filler metal. Joint strength increased with bonding time up to 1·8 ks and reached the maximum value of 850 MN m?2 which corresponded to 90% of the tensile strength of Ti–6Al–4V. The extent of deformation of Ti–6Al–4V in the vicinity of the bonding interface was small compared with that of solid diffusion bonding because of the low bonding pressure. The bonding layer had an acicular microstructure which was composed of Ti2Cu and α titanium with dissolved zirconium. Brittle products such as (Ti, Zr )5 Si3 or (Ti, Zr )5 Si4 were formed at the interface between the SiC fibres and the filler metal. These products existed only at the end of fibres, in very small amounts, therefore joint strength was not significantly affected by the products.

MST/1989  相似文献   

20.
The effect of Ba(Zn1/3Ta2/3)O3 (BZT) ceramic filler on the dielectric, mechanical and thermal properties of high density polyethylene (HDPE) matrix have been investigated. The dispersion of BZT particles in the matrix was varied up to 0.45 volume fraction (Vf). The SEM images confirmed the increase in connectivity between the filler particles with the increase in filler loading. All the composites showed excellent densification (>99 %) with relatively low moisture absorption (<0.04 wt%). The dielectric properties of the composites were investigated at 1 MHz, 5 GHz and at 10 GHz. The relative permittivity and the dielectric loss were found to increase as a function of BZT loading. Different theoretical models were used to predict the relative permittivity at 10 GHz. Effective medium theory gave the best correlation with the experimental results. An enhancement in the thermal conductivity (TC) and a reduction in the coefficient of linear thermal expansion (CTE) were achieved with filler loading. A slight decrease in the tensile strength was also observed with BZT loading. At 10 GHz, 0.45 Vf BZT reinforced HDPE showed a low relative permittivity (εr = 8.2) and a low dielectric loss (tanδ = 1.6 × 10?3) with good thermal (TC = 1.4 W m?1 K?1, CTE = 92 ppm/°C) and mechanical (tensile strength = 18 MPa) properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号