首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.  相似文献   

2.
Meso-scale finite element method (FEM) is considered as the most effective and economical numerical method to investigate the mechanical behavior of braided textile composites. Applying the periodic boundary conditions on the unit-cell model is a critical step for yielding accurate mechanical response. However, the force loading mode has not been employed in the available meso-scale finite element analysis (FEA) works. In the present work, a meso-scale FEA is conducted to predict the mechanical properties and simulate the progressive damage of 3D braided composites under external loadings. For the same unit-cell model with displacement and force loading modes, the stress distribution, predicted stiffness and strength properties and damage evolution process subjected to typical loading conditions are then analyzed and compared. The obtained numerical results show that the predicted elastic properties are exactly the same, and the strength and damage evolution process are very close under these two loading modes, which validates the feasibility and effectiveness of the force loading mode. This comparison study provides a suitable reference for selecting the loading modes in the unit-cell based mechanical behavior analysis of other textile composites.  相似文献   

3.
有关三维编织复合材料的理论分析研究归纳为:基于细观结构几何模型的物理性能研究和力学性能研究两部分.纤维体积分数是物理性能研究的最主要参数,力学分析以复合材料的弹性性能为主.合理的几何模型决定了力学性能分析与试验结果的一致性.建立在代表性体积单元尺度的几何模型应用最为广泛,得到了力学性能的试验验证.三维编织复合材料的力学性能的数值仿真主要以有限元方法为主,然而仅仅依赖于对其弹性性能的研究结果还远远不能满足三维编织复合材料作为关键结构部件的使用要求,建立完善的断裂准则是编织复合材料大量使用的理论依据.特殊形状的一次性编织复合材料的力学性能研究有待进一步深入.  相似文献   

4.
This paper presents a modified finite element model (FEM) to investigate the thermo-mechanical properties of three-dimensional (3D) braided composite. The effective coefficients of thermal expansion (CTE) and the meso-scale mechanical response of 3D braided composites are predicted. The effects of the braiding angle and fiber volume fraction on the effective CTE are evaluated. The results are compared to the experimental data available in the literature to demonstrate the accuracy and reliability of the present method. The tensile stress distributions of the representative volume element (RVE) are also outlined. It is found that the stress of the braiding yarn has a significant increase with temperature rise; on the other hand, the temperature change has an insignificant effect on the stress of the matrix. In addition, a rapid decrease in the tensile strength of 3D braided composites is observed with the increase in temperature. It is revealed that the thermal conditions have a significant effect on the strength of 3D braided composites. The present method provides an effective tool to predict the stresses of 3D braided composites under thermo-mechanical loading.  相似文献   

5.
三维编织碳/碳复合材料预制体结构模拟   总被引:4,自引:0,他引:4  
通过分析纱线拓扑结构,用单胞的旋转和合成,实现了8.4°,22°两种编织角的三维编织碳/碳复合材料预制体结构的计算机图形模拟,纱线空间走向和截面变形,空隙形状和大小能方便地用图形显示,所模拟的结构与实物相似.从而解决了分析预制体内部结构的难题,为合理设计CVI工艺,进行碳/碳复合材料力学性能的分析奠定了基础.  相似文献   

6.
介绍变截面三维编织预型件的减纱净形制备工艺,通过实验观察与理论建模相结合的方法,分析减纱对预型件细观结构的影响,对比整列减纱、行单元减纱与切削复合材料在变截面区域的弯曲性能。结果表明表面与内部减纱单元是减纱时的基本单位,保证编织规律不变是减纱工艺的基本原则;表面或内部单元减掉后分别会形成两组特殊的纱线轨迹,其中一组纱线的长度与编织角大小较不减纱时增大,而另一组纱线只改变编织角的方向;行单元减纱与整列减纱复合材料的弯曲性能均明显优于切削试件,且行单元减纱试件的弯曲性能比整列减纱试件略高。  相似文献   

7.
分别对编织角度为30和45度的三维四向碳环氧编织复合材料进行了不同厚度试件的弯曲实验,验证了材料的破坏模式、本构关系与试件几何尺寸的相关性.研究表明:弯曲破坏无明显的破坏裂纹,当载荷增加到了极限载荷,载荷不再增加而位移依然逐渐变大.当进行卸载时,大部分的弹性变形都可以得到恢复,仅剩余很小的塑性变形.另外改变试件的厚度对材料的载荷位移关系没有影响.  相似文献   

8.
A Representative Volume Cell (RVC) chosen to epitomize the entire three dimensional four-directional braided composites is investigated to evaluate the mechanical behavior of the material by computational micromechanics. In addition to including several damage modes of braid yarn and matrix within the braided composites, the numerical model also takes into account interface damage mode by using a Cohesive Zone Model (CZM). A parametrical study is conducted to evaluate the influence of interface properties on the macro stress-strain curve and the interaction of different failure modes of the braided composites under uniaxial tensile loading. The interface damage evolution of the braided composites with large braid angle is also provided further. Preliminary results indicate that the interface damage, which is one of the key factors to cause the nonlinearity of the stress-strain relationship, can decrease the elastic modulus but not obviously control the ultimate strength of the braided composites with large braid angle.  相似文献   

9.
严实  吴林志  孙雨果 《材料工程》2007,(7):59-62,66
通过对三维四向编织复合材料薄板试件的宏观压缩实验,研究了三维四向编织复合材料的抗压力学性能.实验结果表明:材料的编织角对其压缩力学性能的影响很大,随编织角的变化,编织复合材料的压缩破坏机制发生了变化.编织角度较小时,材料表现为脆性特征;当编织角度大于某个临界角度时,材料的应力-应变曲线趋于非线性,更多地表现为塑性破坏.  相似文献   

10.
A study is conducted with the aim of developing two numerical models, meso-scale model and fiber embedded matrix model, for evaluating the length-effect and full-field edge-effect of 3D braided composites. Also, for the validation of fiber embedded matrix model, a series of digital image correlation measurements are conducted along the axial directions. The results show that the predicted mechanical behaviors of the tensile and compressive samples are essentially sensitive to the RVC number. Moreover, the proposed fiber embedded matrix method is capable of accurately predicting the cut-edge effect on the full-field mechanical behaviors of 3D braided composites when subjected to the axial tensile and compressive loading, validated by the comparison of the full-field displacement and strain fields.  相似文献   

11.
基于声发射技术的三维编织复合材料压缩破坏分析   总被引:3,自引:0,他引:3  
基于声发射(AE)技术研究了不同编织角度的三维四向炭/环氧编织复合材料在压缩载荷作用下的破坏过程。分析了累积声发射能量,事件率,幅值和波形经过快速傅里叶变换后的峰值频率。同时,结合载荷-位移曲线,把破坏过程分成不同的阶段来深入理解编织复合材料的破坏机理。用光学显微镜观测试件的破坏表面。结果表明AE参数能很好地描述三维编织复合材料的破坏过程,而且破坏机理也可用AE特性来识别。  相似文献   

12.
13.
三维编织复合材料现有的成型方法将导致编织物单胞模型发生变化,据此提出了一种改进的具有矩形截面的单元内胞模型,假设编织纱线具有平行六边形横截面,分析了不同区域胞体内部纤维束的空间构型,建立了三维四向编织复合材料内部单胞三维实体模型。通过分析编织物内纱线间的空间接触关系,采取合理的假设,推导了编织工艺参数和模型结构参数的关系,并计算了三维四向编织复合材料的纤维体积含量,为该种材料后续力学性能分析奠定了基础。该模型适用于部分不规则成型工艺,并有可能应用于其他形式的编织工艺研究。  相似文献   

14.
三维编织复合材料的力学性能研究现状   总被引:11,自引:1,他引:11  
对近年来关于三维编织复合材料力学性能的研究方法和内容进行了综述.归纳出三类主要研究方法:实验研究、细观结构力学模型研究、数值仿真研究.实验研究集中于测试各种编织参数和载荷对其力学性能指标的影响.细观结构力学模型研究主要是通过三维编织体的拓扑结构建立力学分析模型,主要是"米"字枝状模型、纤维倾斜模型和3细胞模型.数值仿真研究是基于材料的线弹性力学,利用有限元分析法对其力学性能进行数值仿真.本工作对当前研究的关键问题进行了分析,就今后的研究工作发表了一些看法.  相似文献   

15.
3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the three-dimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to meas  相似文献   

16.
The torsional bulking behavior of 3D 4-directional braided composites shafts was analyzed in this work. First, the unit cell models of 3D 4-directional braided composites shafts with different braiding angles and fiber volume fraction were built up. Then, the elastic parameters of 3D 4-directional braided composites shafts were predicted using the unit cells under different boundary conditions. Finally, the torsional bulking eigenvalues and bulking modes of the composites shafts were obtained by numerical simulation, and the effects of braiding angle and fiber volume fraction on the torsional bulking behavior of 3D 4-directional braided composites shafts were analyzed. The simulation results show that the bulking eigenvalues increase with the increase of braiding angle and fiber volume fraction. This work will play an important role in the design of 3D 4-directional braided composites shafts.  相似文献   

17.
Delamination initiation and propagation in plain woven laminates and 3D orthogonal woven composites during short beam shear (SBS) test were analyzed using finite element (FE) analyses. Two kinds of 3D woven composites, containing single z-yarns and double z-yarns, were considered. The FE models were guided by experimental observations from SBS tests for the same material systems. A series of mechanisms including creation and evolution of matrix cracks and delaminations were modeled discretely. The force-displacement curves obtained from the FE simulations were compared with those from experiments. Further parametric studies were conducted to investigate the effects of z-yarns and interlaminar fracture toughness on delamination in woven composites. The results from the FE simulations revealed that z-yarns in 3D woven composites can play a major role in impeding propagation of interlaminar cracks. On the other hand 2D plain woven laminates without any z-reinforcement demonstrated higher interlaminar fracture toughness due to undulation in yarns. 3D woven composites with double yarns showed better damage tolerance than single yarn 3D woven composites and their behavior was very similar to composite laminates with high interlaminar fracture toughness.  相似文献   

18.
编织角是影响三维编织复合材料力学性能的最重要因素.实验数据表明:大编织角复合材料在单向拉伸作用下的破坏形式较为复杂,其应力-应变曲线呈现非线性特性.本文建立了细观应力场的均匀化列式和有限元求解方法,运用该方法对三维大编织角复合材料的细观应力分布进行了数值模拟,结合相关的强度理论对材料进行失效分析,并进一步对材料的拉伸强度进行预测.强度计算结果与实验结果较为吻合.  相似文献   

19.
三雏四向复合材料是一种新结构形式的复合材料,具有优良的力学性能、抗冲击损伤性能及耐烧蚀性能,受到各国学者的重视.在讨论目前较为成功的"米"字型、"六面体截面"交织型、"双扭线"型等单胞微观模型的基础上,提出了"贝塞尔"单胞模型.该模型较好地模拟了三维四向复合材料纤维的走向与微观结构,为下一步深入研究打下了基础.  相似文献   

20.
A study is conducted with the aim of developing meso-scale voxel-based model for evaluating the compressive behaviors of warp-reinforced 2.5D woven composites. The real microstructure of warp-reinforced 2.5D woven composites is established. For the validation of this model, a series of axial (warp direction) and transverse (weft direction) compressive tests are conducted. The results show that under axial and transverse compressive loading, the calculated max stress and the final damage morphology agree well with the experimental results. Moreover, it is found that the axial compressive strength is mainly dependent on the high-crimp blinder warp, while the transverse compressive strength is significantly influenced by the warp/weft interlaced regions. It is expected that such a numerical investigation will provide useful information for understanding the strength and failure characteristic of 2.5D woven composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号