首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究和掌握混合摩擦状态下机械密封端面摩擦热的变化规律,基于端面接触分形模型和平均膜厚分形模型,建立了机械密封端面混合摩擦热计算模型,并通过计算分析了端面混合摩擦热的影响因素。结果表明,随着转速的增大,总摩擦热和液膜黏性剪切摩擦热比增大,微凸体接触摩擦热比减小;随着密封介质压力或弹簧比压的增大,总摩擦热近似呈线性增大,黏性剪切摩擦热比减小,接触摩擦热比增大;随着端面分形维数的增大和特征尺度系数的减小,总摩擦热和黏性剪切摩擦热比增大,接触摩擦热比减小,且端面越光滑,总摩擦热、黏性剪切摩擦热比、接触摩擦热比的变化幅度越大;当密封端面处于混合摩擦状态时,接触摩擦热大于黏性剪切摩擦热。  相似文献   

2.
在机械密封端面接触分形模型基础上,依据Archard磨损理论,通过引入分形磨损系数及求解塑性和弹塑性变形微凸体的体积,建立了机械密封端面黏着磨损分形模型。得到了机械密封软质环端面磨损率与端面轮廓分形参数、真实接触面积、材料性能参数以及工作参数之间的关系式。对B104a-70型机械密封软质环端面的磨损率进行了计算和分析。结果表明,端面磨损率随着端面比压、转速及端面特征尺度系数的增大而增大;随着端面分形维数的增大先迅速减小后逐渐增大,即存在一个使磨损率最小的最优分形维数。  相似文献   

3.
激光加工多孔端面机械密封的摩擦性能分析   总被引:1,自引:3,他引:1  
分析了工况参数和结构参数对激光加工多孔端面机械密封摩擦性能的影响。建立了激光加工多孔端面机械密封的计算模型和边界条件,采用有限差分法求解液膜控制方程,获得在不同操作工况和表面微孔结构参数下的密封开启力。理论推导得到了激光加工多孔端面机械密封的摩擦扭矩表达式,并对其进行了分析。结果表明,密封端面间的摩擦扭矩随着密封环转速的增加而增大;微孔深度和微孔密度有最佳参数,使密封端面间的摩擦扭矩最小,且与试验结果吻合。  相似文献   

4.
为揭示干气密封端面间摩擦振动规律,通过对密封端面在干摩擦状态下的微观形貌与受力进行分析,基于分形理论构建包含分形参数的密封端面法向位移激励,以及干气密封在干摩擦状态下的两自由度摩擦振动系统模型,并对摩擦振动系统模型的影响因素进行数值分析。研究结果表明:法向振动位移和速度随着分形维数与转速的增大先增大后减小;密封环面分形维数在1.3左右,以及密封环面平均滑动速度为67.86 m/s时会导致密封端面在法向出现共振现象;法向振动位移和速度随着特征尺度与摩擦因数的增大而增大;法向振动以准周期的高频微幅振动规律变化,相比于特征尺度,分形维数对法向振动的影响更加显著,而摩擦因数对法向振动来说不是一个敏感因素;切向振动位移和速度随着摩擦因数的增大而增大,而且以周期性的高频微幅振动规律变化;摩擦因数对系统切向振动的影响比对法向振动的影响更加明显。  相似文献   

5.
剖分式机械密封传热及耦合变形的数值研究   总被引:1,自引:0,他引:1  
胡琼 《润滑与密封》2018,43(8):24-31
为研究剖分式机械密封变形规律,建立剖分式机械密封三维传热模型,计算剖分环端面摩擦热、摩擦热分配系数及对流换热系数,研究主轴转速、冲洗量对剖分环温度场、热变形及热-力耦合变形的影响,同时分析箍紧力对剖分环热-力耦合变形的影响。研究结果表明:温度最高点位于密封端面内径侧,且碳石墨剖分静环的密封端面温度比碳化硅动环的高,密封端面和分型面在温度场作用下产生正锥度变形,而箍紧力可以减小密封端面及分型面的变形;剖分动静环的端面和分型面热变形锥度随转速的增大,均呈现增大趋势,端面的耦合变形锥度也随之增大;冲洗量增大,剖分动环端面和分型面热变形锥度减小,端面耦合变形锥度减小,剖分静环变形规律相反;箍紧力增大,剖分动环、静环端面耦合变形锥度增大。  相似文献   

6.
基于微凸体侧接触模型,推导了机械密封端面混合摩擦热计算式,研究了转速、摩擦间隙和粗糙度对常用机械密封端面混合摩擦热的影响。结果表明:常用混合摩擦状态下的机械密封端面微凸体接触多为第Ⅱ类弹塑性接触;当转速ω ≤ 2 800 r/min时,微凸体接触摩擦热所占比重较大,但随着转速上升,黏性摩擦热比重逐渐增大至百分之百;随着摩擦间隙d的增大,黏性摩擦热和微凸体接触摩擦热曲线均呈下降趋势,当d ≥ 2.8σ时,微凸体接触摩擦热减小至零,而黏性摩擦热随d变化不大;随着粗糙度的增加,端面摩擦热先下降后上升,在近1.6 μm处最小,因而在机械密封设计时,存在某一粗糙度使混合摩擦热最少。  相似文献   

7.
一、序言机械密封属接触式端面密封,不仅摩擦副端面因摩擦生热,而且旋转元件因摩擦也会生热;使端面温度升高。密封环端面温度过高会导致密封工作不正常,例如:端面间液膜汽化造成液膜失稳;密封面热裂或热变形造成热弹失稳;温度升高促使磨损和腐蚀加剧。因此,为了保证机械密封正常运转,必须控制其端面温度使之处于正常工作范围内。这样首先就要确定机械密封的端面温度。现有的端面温度计算方法有精确计算的分析法、有限元法、数值方法和热电模拟法,还有平均温度的简单计算方法等。  相似文献   

8.
弹簧比压对机械密封性能影响的分形分析   总被引:1,自引:0,他引:1  
在考虑磨损引起端面表面形貌变化的基础上,引入分形理论分析了弹簧比压对平衡型机械密封泄漏率和端面摩擦特性的影响,并针对GY-70平衡型机械密封进行了试验研究。理论分析和试验结果表明,尽管弹簧比压的变化有时不足以改变机械密封的端面摩擦状态,但随着弹簧比压的增大,摩擦副之间的润滑介质已相对减少,端面摩擦特性逐渐恶化。机械密封存在一最佳弹簧比压,不同的工况条件下,最佳弹簧比压是不相同的。正确选择弹簧比压是实现机械密封长寿命低泄漏率的关键。  相似文献   

9.
机械密封摩擦与密封机理研究的基础是密封端面,目前,其摩擦磨损机理和密封机理均没有形成公认的一种理论,其中,密封端面形貌及变化是研究过程中难以分析计算和确定的,分形理论能建立一个端面形貌测量与测量仪器无关、参数惟一的数学模型.  相似文献   

10.
以接触式机械密封动、静环接触界面为研究对象,分析其表面微观形貌中的自仿射分形特性,结合逾渗理论,对密封端面泄漏通道特性进行理论分析,并利用Fluent软件对微通道内的流体流动进行数值模拟,探讨机械密封的端面载荷、表面形貌参数对泄漏量的影响。研究结果表明,密封端面的泄漏量随密封端面分形维数的增加而降低;在某一确定分形维数下,随着表面轮廓尺寸系数的增大,泄漏率也相应增大;端面比载荷对机械密封泄漏率的影响存在但并不显著。逾渗理论是一种研究多孔介质的强无序及随机几何结构端面特性的较好方法,对实现机械密封工作状况的正确判断,指导机械密封件的设计、制造、使用和维修具有一定的指导意义。  相似文献   

11.
针对机械密封运转过程中平均膜厚的变化规律,采用重构分形接触模型表征端面形貌,结合机械密封泄漏率预测模型,建立了平均膜厚预测模型。使用Mathematica软件对给定工况下机械密封的泄漏率和平均膜厚进行理论计算,分析不同参数条件下泄漏率和平均膜厚的变化趋势。研究表明:当分形维数较小时,尺度系数减小、材料系数增大和端面比载荷增大均可使平均膜厚减小,但材料系数变化对平均膜厚数值的影响幅度较小,而尺度系数和材料系数减小、端面比载荷增大可导致泄漏率降低;当分形维数大于1.69时,机械密封端面比载荷和材料性能参数对泄漏率和平均膜厚的影响可忽略不计。  相似文献   

12.
通过开展正交试验,分析空调冷却水泵机械密封参数优化问题。经方差分析观察到,在机械密封端面摩擦功耗方面,不同工艺参数对密封端面摩擦功耗均会产生一定的影响,其中,电机转速对密封端面摩擦功耗所产生的影响最大,其次为介质压力,弹簧比压则对密封端面摩擦功耗影响相对较小。分析极差分析结果可以发现,随着弹簧比压和电机转速以及介质压力的不断增加,密封端面摩擦功耗也会随之呈现出不断增大的变化趋势。经过机械密封泄漏量方差分析,对密封端面摩擦功耗产生较大影响的工艺参数为弹簧比压,其次为介质压力,电机转速对密封端面摩擦功耗所产生的影响则相对较少,另外,弹簧比压会对泄漏量产生较大的影响。最终分析确定机械密封的最佳工艺参数条件为:弹介质压力为0.60 MPa,电机转速为2960 r/min,簧比压为0.06 MPa。  相似文献   

13.
针对高温热油泵机械密封的失效问题,研究其在不同工况和结构参数下的热特性。通过ANSYS建立由机械密封动环、静环和静环座组成的三维热-结构耦合模型,并使用MATLAB计算端面热流密度插值函数;采用UDF函数对插值函数进行加载,求出每一个单元的热流密度,进而分析高温热油泵机械密封在不同转速、材料和相关结构参数下的传热特性和端面温升。分析结果表明:高温热油泵机械密封运转过程中,接触端面处温度最高;端面热量主要是通过动环传导出去,改变O形圈的支撑位置可以优化端面温升;随着端面宽度的增加及载荷系数的增大,端面温升均增大;机械密封在稳态运转的情况下,端面不会发生相变。  相似文献   

14.
以深海推进器等水下设备用机械密封为研究对象,建立机械密封环模型,考虑深海变工况下接触端面摩擦因数的差异性,采用分离法分别对机械密封动、静环端面进行热-力耦合变形分析,并对分别考虑密封环热变形、力变形、热-力耦合变形的分析结果进行比较。结果表明:接触端面摩擦因数大小与介质压力、转速、液膜厚度等因素有关,端面摩擦因数随介质压力增大而减小,随转速增大而增大,随液膜厚度增大而减小;单一力变形、热变形分析与热-力耦合变形分析结果差别较大,热-力耦合分析结果要比单一变形分析更接近实际、分析更准确;瞬态工况下,端面温度及端面接触应力峰值均出现由外向内的变化趋势,端面接触状态受端面温度分布影响明显。  相似文献   

15.
李振华 《润滑与密封》2023,48(12):68-75
针对机械密封装置在启停阶段或某些特定工况下出现高温以及摩擦磨损严重等问题,探究考虑粗糙度效应的微孔化机械密封端面接触压力及温升的变化规律,以揭示机械密封端面的真实接触状态。基于分形理论建立机械密封静环粗糙表面和动环微孔接触模型,采用数值计算方法,研究微孔对机械密封端面接触压力和温升的影响,以及表面粗糙度对机械密封端面接触面积、接触压力、温升的影响。结果表明:微凸体经过微孔时,微凸体嵌入微孔边缘使得接触压力峰值增大,导致切削发生;摩擦过程中,压力最高点位置因为微凸体的弹塑性变形而不固定,改善了微凸体的受力情况;微孔降低了密封端面的接触面积,从而使得微凸体的接触减少、压力极值点减少,降低了密封端面摩擦副的温度,改善了密封端面的磨损状况;表面粗糙度越小,接触面积越大,接触压力、端面温度更加均匀,表面粗糙度越大,端面磨损风险更加严重。  相似文献   

16.
为了研究多孔端面机械密封的摩擦性能,应用ANSYS CFX软件对密封端面间的流场进行数值模拟,得到不同工况参数和微孔结构参数下密封端面液膜的剪切应力分布云图,并对计算结果进行分析。研究表明:剪切应力主要作用于非孔区;介质压力和微孔深度对剪切应力分布影响较小,而降低转速、减小介质黏度、增大微孔半径可以有效地减小剪切应力,降低端面的摩擦损失,延长密封的使用寿命。  相似文献   

17.
波度端面机械密封热流体动力润滑性能分析   总被引:1,自引:0,他引:1  
基于流体润滑理论,考虑润滑液膜空化现象和润滑液膜与密封环之间的热传导作用,建立波度端面机械密封三维流固热耦合模型,采用SUPG有限单元法求解广义雷诺方程、能量方程和热传导方程,计算端面液膜压力、开启力、泄漏率、摩擦因数等参数,对比分析密封热流体动力润滑(THD)和流体动力润滑(HD)密封特性。结果表明:随着转速、密封压力、波幅、波数的增加,开启力和泄漏率增加,摩擦因数减小;随着坝宽比、初始膜厚的增加,开启力和泄漏率减少,摩擦因数增加。热效应对密封性能影响显著,随着端面摩擦热升高,润滑液膜压力降低。  相似文献   

18.
高参数深槽热流体动压机械密封特性计算   总被引:2,自引:1,他引:1  
综合考虑高参数深槽热流体动压机械端面密封中密封面粗糙度影响、密封环的变形和热传导、端面摩擦生热、端面液膜润滑与承载以及微凸体接触承载等物理过程间的相互作用,提出了适用于真实粗糙表面的高参数深槽热流体动压机械密封的特性计算方法,并对圆弧槽面密封的特性进行了计算,理论计算结果与E.Mayer的试验结果在规律上一致。  相似文献   

19.
该文对影响重水堆换料系统某型机械密封性能关键参数进行了分析确认。主要分析了液膜厚度与机械密封端面开启力关系,锥度对密封性能的影响,最终分析认为机械密封端面开启力和不够,液膜厚度较薄且液膜不稳定,使得密封端面发生混合摩擦接触状态,密封扭矩增大,泄漏率过低。结合分析结果,对机械密封的动环端面进行修磨,增大动环端面锥度。修磨后转动力矩和泄漏率测试结果良好,达到了预期目的。该项目研究成果具有一定的推广价值。  相似文献   

20.
机械密封环的传热特性分析   总被引:5,自引:0,他引:5  
研究机械密封端面摩擦热在动环、静环、端面间液膜和密封介质组成的传热系统中的传递规律。按换热面积守恒的原则将密封环简化为当量圆筒,提出动环和静环获得的摩擦热的计算方法,推导密封环的温度分布方程。结果表明,液膜摩擦热量随角频率的增加和平均膜厚的减小而增加。绝大部分摩擦热通过动环传递到介质,静环端面的温升较小。动环靠近介质侧的温度低于空气侧的温度,端面上的温度较高,且端面径向存在温度梯度。增大动环与介质的接触面积或选用热导率大的材料可降低动环上的最高温度和端面上内外径处的温差,提高机械密封的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号