首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very high cycle fatigue tests under axial loading at frequencies of 95 Hz and 20 kHz were performed to clarify the effect of loading type on fatigue properties of a high strength bearing steel in combination with experimental result of this steel under rotating bending. As a result, this steel represents the single P-S-N (probabilistic-stress-life) curve characteristics for surface-induced fracture and interior inclusion-induced fracture, just like that under rotating bending. However, fatigue strength is lower, where the run-out stress at 109 cycles is evaluated to be 588 MPa, less than that under rotating bending with about 858 MPa. Occurrence probability of larger and deeper inclusion-induced fracture is much higher than that under rotating bending. Furthermore, the formation process of fine granular area (FGA) is independent of the type and frequency of loading, which is very slow and is explained as the crack nucleation process under the special dislocation mechanism. The stress intensity factor range at the front of FGA, ΔKFGA, is approximately regarded as the threshold value controlling the stable propagation of interior crack. For the control volume of specimen under axial loading, the estimated value of fatigue limit by FGA is similar to experimental run-out stress value at 109 cycles, but that by inclusion is larger. However, the corresponding estimated results under rotating bending are all conservative.  相似文献   

2.
This paper presents a study of the fatigue failure of an anti-return valve, designed to work in the high pressure system (500 MPa) of a high pressure processing machine. To do this, the crack propagation has been simulated by means of the linear-elastic fracture mechanics approach under mixed-mode loading conditions. From an initial crack, which size is related with the microstructure and superficial finish, the crack growth has been simulated using the stress intensity factors KI and KII of the cracked valve axisymmetric geometry. The crack propagation path has been obtained step by step, applying the criterion of the maximum circumferential stress at the crack tip. The experimental and simulated crack propagation paths have been compared and, as a consequence of the reliable results obtained, the fatigue life of the valve has been calculated using the Paris law of the material with an effective stress intensity factor Keff. The good agreement with experimental fatigue life allows to perform new improved designs using the methodology presented.  相似文献   

3.
Fatigue notch factor and short crack propagation   总被引:1,自引:0,他引:1  
This paper addresses the problem of high cycle fatigue at notches and the role of short crack propagation in the fatigue notch factor kf. Ahead of a V-notched feature, the stress field is characterized by two parameters, i.e. the stress concentration factor kt and the normalized notch stress intensity factor kn. Whether fatigue strength at a given life is controlled by crack initiation (kf = kt) or by short crack propagation (kf < kt) depends on kt, kn and the material resistances to crack initiation and to short crack propagation. The analysis accounts for the effects of notch acuity, notch size, material and fatigue life on the fatigue notch factor kf. It opens the door to a new method for predicting fatigue life using two S-N curves for a given material; one being measured from a smooth specimen, the other from a severe V-notch.  相似文献   

4.
In this work, fatigue crack propagation in thin-walled aluminium alloy structure with two friction stir welded T joints has been simulated numerically. Crack propagation in stiffened part of the structure between two friction stir welded T joints is analysed by using the eXtended Finite Element Method (XFEM), including software ABAQUS, as well as MORFEO, for modelling and results display. Tensile fatigue loading is applied, with stress ratio R = 0, and maximum stress σmax = 10 MPa. Material properties (Al 2024-T351, as used in aeronautical industry) in different welded joints zones are adopted from available literature data. Following results are obtained by numerical analysis: stress–strain and displacement state in the structure, position of the crack tip and value of stress intensity factor for every crack propagation step, as well as the structural life estimation, i.e. number of load cycles, N, also for each crack propagation step. Using these results the number of cycles at which the crack starts to propagate in an unstable manner is predicted.  相似文献   

5.
Thin sheets of nitrided 18Ni maraging steel are tested under cyclic tension (load ratio R = 0.1) in the very high cycle fatigue (VHCF) regime. The ultrasonic fatigue testing method with a cycling frequency of about 20 kHz has been further developed for these experiments. Sheet specimens with 0.35 mm thickness are mounted on a carrier specimen, they are pre-stressed and are forced to vibrate jointly. Between 107 and 109 cycles, fatigue cracks are initiated exclusively at internal TiN inclusions. The areas of the crack initiating inclusions projected perpendicular to the applied tensile stress are evaluated. The square root of inclusion areas, (areaINC)1/2 lies between 2.5 μm and 5.3 μm. Considering inclusions as cracks, their stress intensity range is between ΔKINC = 1.3 MPa m1/2 and 2.4 MPa m1/2. The sizes of crack initiating inclusions influence fatigue lifetimes. This is considered in a crack propagation model and by presenting lifetimes versus the stress amplitudes multiplied by (areaINC)1/12. A mean lifetime of 109 cycles is found at a stress amplitude of 22% of the tensile strength, which is comparable to other high strength steels tested under cyclic tension.  相似文献   

6.
Experimental results indicate that the fatigue life reduces by about two orders of magnitude when inclusion size doubles. Then, a model is proposed for predicting the fatigue strength of high-strength steels with fish-eye mode failure based on the experimental results for the effect of inclusion size and stress ratio. In the model, the effect of inclusion size a0 and stress ratio R on fatigue strength σa is expressed as σa  a0m[(1  R)/2]α, where m and α are material parameters. The predicted results are in good agreement with our experimental results and the ones reported in literature.  相似文献   

7.
The high-cycle fatigue characteristics focused on the behavior of the transverse crack growth up to 108 cycles were investigated using quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates whose stacking sequence was [−45/0/45/90]s. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz in addition to 5 Hz. In this study, to evaluate quantitative characteristics of the transverse crack growth in the high-cycle region, the energy release rate considering the free-edge effect was calculated. Transverse crack growth behavior was evaluated based on a modified Paris law approach. The results revealed that transverse crack growth was delayed under the test conditions of the applied stress level of σmax/σb = 0.2.  相似文献   

8.
The wire winding of high pressure vessels is a technique usually applied to introduce initial compressive stresses in the inner core of the vessel, with the aim to improve the fatigue life under cyclic pressure conditions. In this work, the procedure followed to calculate the number of design cycles is presented, using the fracture mechanics approach and the structural integrity concepts. In particular, the API 579-1/ASME FFS-1 procedure has been used to analyse the structural integrity of the vessel through the crack propagation stage. Starting from a postulated internal semi-elliptical crack the number of design cycles is determined, the flaw aspect ratio is updated and the structural integrity of the cracked vessel is evaluated using the Failure Assessment Diagram (FAD). Different propagation laws, which take into account for negative stress intensity ratio factors R = Kmin/Kmax < 0, are reviewed, because of their high influence on the fatigue life of wire-wound vessels. In addition, this paper presents a number of useful expressions to calculate the stress intensity factor (SIF) for internal semi-elliptical cracks in wire-wound pressure vessels, in order to carry out the numerical integration of the number of cycles, updating the flaw aspect ratio, during the fatigue crack growth.  相似文献   

9.
The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 × 108 with the related SN curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces. It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 107 cycles. While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained SN curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition.  相似文献   

10.
Effects of prior low cycle fatigue (LCF) cycling on the subsequent high cycle fatigue (HCF) limit stress corresponding to a life of 107 cycles are investigated for Ti-6Al-4V at room temperature. Tests are conducted at 420 Hz on an electrodynamic shaker-based system at several different LCF maximum loads and under subsequent HCF at R=0.1, 0.5 and 0.8 using a step loading procedure. Under these load combinations, which include the possibility of overload or underload effects if cracks form, there is no statistically significant effect of the prior LCF on the subsequent HCF limit stress. While LCF loading at a high stress of 900 MPa is seen to result in strain ratcheting, no distinct features on the fracture surface and different mechanisms of crack propagation from those obtained at lower maximum loads were observed. LCF loading up to 50% of expected life did not produce any indications of crack formation from either the stress limit data or the fracture surfaces.  相似文献   

11.
A study was conducted to verify the efficacy of a fracture mechanics methodology to model the crack growth behavior of fretting fatigue-nucleated cracks obtained under test conditions similar to those found in turbine engine blade attachments. Experiments were performed to produce cracked samples, and fretting fatigue crack propagation lives were calculated for each sample. Cracks were generated at 106 cycles (10%-of-life) under applied stress conditions previously identified as the fretting fatigue limit conditions for a 107 cycle fatigue life. Resulting cracks, ranging in size from 30 to 1200 μm, were identified and measured using scanning electron microscopy. Uniaxial fatigue limit stresses were determined experimentally for the fretting fatigue-cracked samples, using a step loading technique, for R=0.5 at 300 Hz. Fracture surfaces were inspected to characterize the fretting fatigue crack front indicated by heat tinting. The shape and size of the crack front were then used in calculating ΔKth values for each crack. The resulting uniaxial fatigue limit and ΔKth values compared favorably with the baseline fatigue strength (660 MPa) for this material and the ΔKth value (2.9 MPa√m) for naturally initiated cracks tested at R=0.5 on a Kitagawa diagram.Crack propagation lives were calculated using stress results of FEM analysis of the contact conditions and a weight function method for determination of ΔK. Resulting lives were compared with the nine million-cycle propagation life that would have been expected in the experiments, if the contact conditions had not been removed. Scatter in the experimental results for fatigue limit stresses and fatigue lives had to be considered as part of an explanation why the fatigue life calculations were unable to match the experiments that were modeled. Analytical life prediction results for the case where propagation life is observed to be very short experimentally were most accurate when using a coefficient of friction, μ=1.0, rather than for the calculations using μ=0.3  相似文献   

12.
Abstract

The crack growth process in GBF of high strength bearing steel JIS SUJ2 is qualitatively investigated by low–high two-step variable amplitude loading (TSAL) tests. It is demonstrated that the GBF size reduces with the increase in applied stress amplitude, and that the GBF size at a given stress amplitude is a constant which is independent of inclusion size at the crack origin. The fatigue life at a given stress amplitude, which is proportional to ?8 power of the inclusion size, reduces with increasing inclusion size. It was shown by TSAL tests that GBF was formed at the earlier stage (approximate 105 cycles corresponding to less than 1% total fatigue life in the regime Nf≧107 cycles) and propagated hardly until near to the final life (more than 90% total fatigue life). After that the GBF crack will propagate rapidly to the ultimate size in a short time.  相似文献   

13.
This work presents the experimental results of fatigue crack growth resistance of ultrafine-grained (UFG) copper. The UFG copper has a commercial purity level (99.90%) and an average grain size of 300 nm obtained by a 8-passes route Bc ECAP process. The fatigue propagation tests are conducted in air, at load ratios R = Kmin/Kmax varying from 0.1 to 0.7, on small Disk Shaped CT specimens. Both stage I and stage II regime of growth rate are explored. Results are partially in contrast with the few experimental data available in the technical literature, that are by the way about high purity UFG copper. In fact, the present material shows a relatively high fatigue crack resistance with respect to the unprocessed coarse-grained alloy, especially at high values of applied stress intensity factor ΔK. At higher R-ratio a smaller threshold intensity factor is found, together with a lower stage II fatigue crack growth rate. The explanation of such crack growth retardation is based on a diffuse branching mechanism observed especially at higher average ΔK.  相似文献   

14.
Fatigue crack propagation in microcapsule-toughened epoxy   总被引:2,自引:0,他引:2  
The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix leads to significant reduction in fatigue crack growth rate and corresponding increase in fatigue life. Mode-I fatigue crack propagation is measured using a tapered double-cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes: 0, 5, 10, and 20% by weight and 50, 180, and 460 μm diameter. Cyclic crack growth in both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law. Above a transition value of the applied stress intensity factor ΔK T, which corresponds to loading conditions where the size of the plastic zone approaches the size of the embedded microcapsules, the Paris law exponent decreases with increasing content of microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations above 10 wt% microcapsules. Improved resistance to fatigue crack propagation, indicated by both the decreased crack growth rates and increased cyclic stress intensity for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms induced by the embedded microcapsules as well as crack shielding due to the release of fluid as the capsules are ruptured. In addition to increasing the inherent fatigue life of epoxy, embedded microcapsules filled with an appropriate healing agent provide a potential mechanism for self-healing of fatigue damage.  相似文献   

15.
In order to examine the mechanics of crack initiation at the free interface edge of a microcomponent on a substrate, delamination tests are carried out for two specimen shapes of Cr microdots on a SiO2 substrate. The microdots of the first specimen are shaped like the frustum of a round cone. The Cr microdots are successfully delaminated from the SiO2 substrate in a brittle manner and the critical load is measured by atomic force microscopy (AFM) with a lateral loading apparatus. Stress analysis reveals that a singular stress field exists near the interface edge and the strength for the crack initiation is governed by the intensified normal stress field. The critical stress intensity parameter is evaluated as KσC ≈ 0.24 MPa m0.39. Similar delamination tests are conducted for microdots shaped like the frustum of an oval cone. The stress distributions at the crack initiation of this specimen shape show a higher normal stress than the first specimen shape in the region near the interface edge of about x < 40 nm, while it is lower in the region of about x > 50 nm (x: distance from the edge). This suggests a limitation of conventional fracture mechanics: namely, the crack initiation in these specimens is not uniquely governed by the intensity of the singular field. It is found that the delamination crack is initiated when the averaged stress σya in the region of 90-130 nm reaches 190-270 MPa, regardless of the specimen shape. This indicates that the dominant stress region of crack initiation is roughly estimated as 90-130 nm and the criterion is given in terms of the averaged stress in the region.  相似文献   

16.
The paper presents the results of an investigation of the effect of weld toe burr grinding on the fatigue performance of non-load-carrying transverse fillet welded joints. Crack initiation and propagation were monitored by a modified replica method. It was found that, although the average life increase due to toe grinding was in agreement with published data, the majority of the fatigue cracks in specimens that gave fatigue lives <~106 cycles initiated at flaws just beneath the ground surface. Both the experiments and calculations based on fracture mechanics suggested that the fatigue lives of the toe ground joints in this life regime were dominated by the crack propagation process. However, in the long life regime (>106 cycles), crack initiation became significant. Reasonable estimates of the crack initiation period were made using the local stress approach proposed by Lawrence et al. [Lawrence FV, Mattos RJ, Higashida Y, Burk JD. Estimating the fatigue crack initiation life of welds. In: Hoeppner DW, editor, Fatigue Testing of Weldments, ASTM STP 648, American Society for Testing and Materials; 1978, p. 134–58]. The investigation suggested that more benefit from weld toe grinding could be claimed in the long (N > 106 cycles) than the short life regime.  相似文献   

17.
Excellent corrosion resistance of chlorinated polyvinyl chloride (CPVC) makes it an attractive material for piping systems carrying corrosive materials. The relatively high glass transition temperature of CPVC has increased its use in hot water distribution. Establishing a relationship that describes the effect of test frequency on fatigue crack propagation (FCP) rate of polymers is an interesting challenge. FCP rates can decrease increase or remain constant with increasing test frequency. Moreover, FCP sensitivity to frequency of some polymers is known to be dependent on test temperature. In this study, fatigue crack propagation in a commercial grade chlorinated vinyl chloride (CPVC) over the frequency and temperature ranges of 0.1-10 Hz and −10 °C to 70 °C, respectively, was investigated. FCP tests were conducted on single edge notch (SEN) specimens prepared from 100-mm injection molded CPVC pipefittings. The crack growth rate (da/dN) was correlated with the stress intensity range ΔK. The FCP rate was found to be insensitive to frequency at sub room temperatures. The fatigue crack propagation resistance of CPVC was enhanced with increasing cyclic frequency at 50 and 70 °C. Frequency effect on FCP rate was found to be higher in the low frequency range.Macro-fractographic analysis of fracture surface showed that stepwise crack propagation existed at 0.1 and 1 Hz for all temperatures of interest.  相似文献   

18.
CRACK NUCLEATION AND PROPAGATION IN BLADE STEEL MATERIAL   总被引:1,自引:0,他引:1  
Stress corrosion cracking and corrosion fatigue of 12 Cr steel in sodium chloride solution has been investigated. Tests have been performed in air at room temperature and in aqueous solution with 22% NaCl at 80°C. The influence of corrosion pits on crack nucleation has been investigated. On fracture surfaces tested in environment (22% NaCl solution), crack initiation was observed in correspondence with corrosion pits; in this case fatigue life can be described using a fracture mechanics approach. The ΔK value for crack nucleation from a pit in rotating bending fatigue tests is very low in air (about 3 MPa√m). The results of slow strain rate tests on smooth specimens show that there is a threshold stress intensity, KISCC, of about 15 MPa√m and a plateau in stress corrosion crack growth rate of about 10-5mm/s.  相似文献   

19.
The use of the crack tip stress intensity factor, K, has survived almost 50 years as the key parameter correlating fatigue crack growth. As time past the range of the stress intensity, ΔK, was recognized as causing alternating plasticity at the crack tip. The threshold level for ΔK was discovered. Further, the occurrence of crack closure was noted which affected the ΔK for different load ratios, R of cyclic loading. The ASTM method of counting the linear part of the load displacement for determining ΔKopen was found to understate the ΔKeffective, which correlates data for different load ratios. One approach to adjust for this problem is the “Partial Closure Model”, where the closure only occurs away from the crack tip. Here it will be discussed that such a model leads to a universal growth law. Moreover, this law shows application in estimating the order of magnitude of crack growth life (<107 cycles) for example with very high cycle fatigue (>109 cycles). Some advances in this application will also be cited.  相似文献   

20.
Fatigue crack growth retardation under stress spectra with constant amplitude and variable mean stress, respectively, was studied. Flat specimens with a central through crack were tested under tension-tension load. The specimens were made with low alloy steel 4 mm thick, with yield strength of 625 Mpa and ultimate tensile strength of 784 MPa. Overload affected crack length increments Δa1 were studied. The best correlation was obtained between monotonic plane stress plastic zone size 2ry and Δa1. The cyclic plastic zone size 2rpc correlated with crack length increment of minimum crack growth rate after overload. Forman's equation and Willenborg's model of fatigue crack growth retardation were used for theoretical prediction of fatigue crack propagation life. The best agreement between theoretical and experimental results was also obtained using monotonic plastic zone size instead of monotonic plastic zone radius or cyclic plastic zone size. The agreement is reasonably good, even though in the case of one spectrum, cracks were arrested for several thousand cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号