首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
针对滚动轴承振动信号的非平稳特性,实际工况下难以采集大量的样本信号分析故障状态,提出基于自适应噪声的完备经验模态分解(CEEMDAN)与多尺度排列熵(MPE)相融合的故障识别方法。首先,对振动信号进行小波阈值去噪,利用CEEMDAN算法对去噪后的非平稳振动信号自适应分解,对分解后的若干个固有模式分量(IMF)计算互相关系数;然后,重构信号,计算其MPE并组成故障特征向量;最后,把特征向量输入到支持向量机(SVM)中,以识别滚动轴承的故障类型。通过对仿真信号以及实际实验数据的对比验证分析,有效证明了该方法的识别准确率比基于EMDMPE的故障识别方法提高5%,结果表明:基于CEEMDAN-MPE的滚动轴承SVM故障识别方法可以更准确地提取轴承的特征,并识别轴承的故障状态,有更强的实用性和有效性。  相似文献   

2.
针对滚动轴承故障振动信号具有非平稳性及非线性的特点,提出一种基于自适应局部迭代滤波分解(ALIFD)模糊熵和GK聚类的滚动轴承故障诊断方法。首先对滚动轴承故障振动信号进行ALIFD分解,得到若干个本征模态函数(IMF)分量,然后通过相关性分析筛选出前3个包含主要特征信息的IMF分量,并将筛选的IMF分量的模糊熵作为特征向量,最后利用GK聚类对所得的特征向量进行识别分类。将该方法应用于滚动轴承实验数据分析,并使用分类系数和平均模糊熵对分类性能进行评价,结果表明,与基于经验模态分解模糊熵和GK聚类的故障诊断方法进行对比,该方法具有更好的分类性能。  相似文献   

3.
郑惠萍 《机床与液压》2023,51(19):216-222
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。  相似文献   

4.
为对行星齿轮进行故障诊断,采用自适应噪声完备总体经验模态分解(CEEMDAN)方法对采集的信号进行分解。对分解得到的各IMF分量进行相关系数计算,优选出与原始信号相关性较大的前4阶分量进行样本熵计算,得到特征值,构成特征向量。将特征向量输入到概率神经网络系统中进行诊断,且与基于局域均值分解的样本熵特征提取方法的诊断结果进行对比。结果表明:利用CEEMDAN样本熵提取的特征值能更精准地反映系统的故障特性,故障诊断的正确率高。  相似文献   

5.
针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,可得到不同的IMF分量;计算不同参数条件下重构后的信号的峭度值,选用峭度值最大的一组参数重新对信号进行CEEMDAN分解,并进行信号重构。对重构后的信号进行RCMDE分析,提取故障特征向量,并利用支持向量机(SVM)进行分类识别。将优选参数的CEEMDAN分解方法和原CEEMDAN分解方法进行对比,结果表明:优选参数的CEEMDAN分解方法能更好地提取往复压缩机周期冲击性信号,有利于提高故障诊断的精确度。  相似文献   

6.
为了提高变分模态分解(VMD)对滚动轴承微弱故障特征提取的准确性,提出了一种基于参数优化VMD与奇异值分量及其熵相结合的滚动轴承故障诊断方法。该方法通过寻优算法确定VMD的模态数K和二次惩罚因子α;根据余弦-标准差指标提取VMD典型本征模态分量(IMF);计算IMF奇异值及其熵,并利用计算结果分别判断滚动轴承的不同故障状态。结合美国西储大学轴承振动信号数据,实验结果表明:相比经验模态分解奇异值故障诊断方法,基于参数优化VMD奇异值故障诊断方法能更明显地识别滚动轴承的不同故障类型,为区分滚动轴承微弱故障提供了一种可行的诊断思路。  相似文献   

7.
利用滚动轴承各种工作状态下测量得到的声发射信号,建立了一种基于总体平均经验模态分解(EEMD)与概率神经网络(PNN)的滚动轴承故障特征提取和诊断方法。通过EEMD对信号进行自适应时频分解,在不同频段上分析本征模态函数(IMF)分量;计算IMF的能量值并做能量贡献分析,确定主元分量以组成故障特征向量;利用PNN网络实现故障特征向量与故障模式之间的函数映射,进行故障诊断。仿真结果和试验数据的对比证明了提出方法的有效性。  相似文献   

8.
针对齿轮箱轴承特征难以提取的问题,提出一种基于改进希尔伯特-黄变换(HHT)和形态学分形维数的故障特征提取方法。首先采用自适应白噪声总体经验模态分解(CEEMDAN)方法将轴承振动信号分解为若干个固有模态函数(IMF),然后分别计算各IMF分量的相关系数和峭度值以滤除对信号特征不敏感的分量,最后计算包含敏感故障特征分量所组成的重构信号的形态学分形维数,以此作为特征参数对轴承的工作状态进行识别。通过对实测轴承信号的分析,结果表明,文章所提方法可有效识别轴承的工作状态和故障类型。  相似文献   

9.
为了在非线性、非平稳的滚动轴承故障振动信号中有效提取出敏感的故障特征,提出了基于变分模态分解(VMD)与时间序列分析相结合的特征提取方法。首先通过VMD将原始信号分解为不同预设尺度的本征模态分量(IMF),对各个IMF分量建立时间序列预测模型,通过叠加重构得到最终的预测模型,比较评价指标确定最优参数的选取。最后,通过仿真信号与滚动轴承实际故障数据分析,并与经验模式分解(EMD)进行对比,结果表明该方法能够有效的提取到故障特征频率。  相似文献   

10.
陈维望  李军霞  张伟 《机床与液压》2022,50(24):159-164
滚动轴承早期故障信号易受噪声干扰,故障冲击成分难以提取,故障识别困难。为从多角度提取故障轴承振动信号特征参数,利用变分模态分解(VMD)将振动信号分解为若干本征模态分量(IMFs),基于包络熵、相关系数、峭度筛选IMF分量。提取所选IMF的时域和频域特征、信号VMD能量熵及各IMF能量比组成特征向量,从时域、频域和能量角度反映故障信息。使用麻雀搜索算法(SSA)优化SVM参数,确定最优参数,克服参数选择难题。将样本特征向量输入SSA-SVM中进行故障分类,轴承故障实验数据表明:该方法故障识别平均准确率在98.71%以上;与单一域特征相比,该方法对故障类型和损伤程度识别效果更佳。  相似文献   

11.
针对石化机组轴承振动信号难以自动区分的问题,提出一种基于改进的自适应噪声完备集合经验模态分解(CEEMDAN)与关联维数的石化轴承故障特征提取方法。选取某故障诊断重点实验室实测的轴承故障数据中4种工况下的轴承振动信号进行测试分析,采用改进的CEEMDAN分解测得的振动信号得到多个模态分量IMF,对得到的高频分量进行叠加求和后求取数据的嵌入维数和延迟时间并进行相空间重构,结合G-P算法求不同嵌入维数下的关联维数进行特征提取。通过极限学习机进行实验,准确率达到92.5%,证明了方法的有效性。  相似文献   

12.
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋势项和零点漂移后,通过CEEMDAN对供输弹信号进行分解,得出模态分量(IMF); 然后依据相关系数和峭度准则这两个标准来选取符合标准的IMF分量,提取这些分量的分布熵(DE)作为特征; 最后用VNWOA-LSSVM诊断模型,输入供输弹系统3种不同工况下的振动信号特征进行故障诊断,并且还对比了LSSVM、PSO-LSSVM、GA-LSSVM和WOA-LSSVM等方法对故障的识别率。实验结果表明:这些方法中经VNWOA优化后的LSSVM的识别率最高,高达94.03%。  相似文献   

13.
李锋  林阳阳  晁苏全  王浩 《机床与液压》2016,44(19):192-195
由于液压泵故障振动信号微弱和不平稳的特性,造成特征向量提取和故障诊断困难。针对这些问题,提出一种CEEMDAN与信息熵结合的特征提取方法。将传感器测得的液压泵的故障振动信号进行CEEMDAN分解得到多个固有模态函数(IMF),并计算其信息熵,然后筛选出信息熵最小的3个IMF分量重构信号,计算重构信号的多域熵作为特征向量来训练决策树模型。液压泵故障诊断实验结果证明了该方法的有效性和优越性。  相似文献   

14.
金成功 《机床与液压》2020,48(16):218-223
针对齿轮箱轴承信号非平稳性及其故障特征难以提取的问题,提出一种自适应白噪声平均总体经验模态分解(CEEMDAN)能量熵和马氏距离相结合的故障诊断方法。首先采用CEEMDAN方法对非平稳的轴承故障信号进行分解,获得若干阶表征信号特性的固有模态函数(IMF)分量;然后计算各IMF分量的自相关函数和相关系数,以滤除信号内的噪声干扰和对故障特征不敏感的IMF分量;最后计算各敏感故障特征分量的能量熵,将其作为特征参数形成状态特征向量,并使用马氏距离判别方法对轴承的工作状态和故障类型进行诊断。通过对实测不同工况以及不同故障程度的齿轮箱轴承信号的分析,证明了所提方法的有效性。  相似文献   

15.
针对轴承早期故障信号微弱、故障特征难以提取的问题,提出一种将完备集合经验模态分解(CEEMDAN)与快速独立分量分析(FastICA)相结合的故障特征提取方法。该方法首先利用CEEMDAN将轴承故障信号进行分解,得到一系列模态分量(IMF);然后依据峭度准则选取相应分量进行重构,引入虚拟噪声通道;最后利用FastICA对重构信号进行解混去噪,分离出源信号的最佳估计信号后进行包络谱分析进而提取故障特征频率。该方法通过LabVIEW软件平台进行编程实现。仿真信号和轴承故障实验信号的研究结果均表明该方法可明显降低噪声和调制成分干扰,突出故障特征频率成分。  相似文献   

16.
针对采集到的加工中心(Machining Center, MC)主轴振动信号中包含大量噪声,导致无法准确地识别MC主轴故障的问题,提出能对高低频的噪声都能分析处理的小波包与具有自适应噪声的完整集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)相结合的降噪方法,对MC主轴振动信号进行降噪处理。使用小波包算法对主轴振动信号进行预处理,通过CEEMDAN方法对预处理的主轴振动信号进行分解,得到多个本征模态函数(Intrinsic Mode Function,IMF)分量和残余分量;计算预处理的主轴振动信号与IMF之间的相关系数,并对高相关系数的IMF分量进行阈值降噪处理;把处理后的IMF分量、未处理的IMF分量和残余分量叠加以获得重建信号。最后,采用仿真信号和真实MC主轴振动信号进行测试,证明该降噪方法能有效去除噪声,使得信号特征的可分离性更高,提高了MC主轴故障识别能力。  相似文献   

17.
针对滚动轴承信号去噪及故障特征提取问题,提出一种基于SVD-CEEMDAN和KLD的滚动轴承故障诊断方法。该方法通过奇异值分解(SVD)对原始信号进行初步去噪,再利用完备集合经验模态分解(CEEMDAN)对去噪后的非平稳振动信号进行自适应分解,得到若干本征模态函数(IMF);然后通过KL散度法(KLD)筛选有效本征模态函数(IMF)重构,再对其进行自相关去噪;最后利用包络谱分析处理去噪信号,提取故障特征频率。通过对轴承实测信号进行分析,该方法可有效抑制噪声,并能清晰地得到反映实际故障信息的信号,证实所提出方法的实用性和有效性。  相似文献   

18.
针对振动信号的非线性、非平稳性和早期故障特征信号难以提取的特点,提出一种基于经验小波变换(EWT)和流形学习约简的故障特征提取方法。首先利用EWT将振动信号分解成不同特征时间尺度的单分量固有模态函数(IMF),然后从包含故障信息的IMFs中提取滚动轴承的时域统计特征、频域统计特征、AR模型自回归系数和功率谱熵,构造高维特征集;再利用线性局部切空间排列(LLTSA)流形学习算法将构造的高维特征集约简为故障区分度更好的低维特征集;最后利用支持向量机(SVM)对提取特征进行故障识别。实验结果表明该特征提取方法对滚动轴承故障诊断准确率更高。  相似文献   

19.
针对滚动轴承故障信号的非线性特性及不同故障类型信号具有不同形态特征的特点,提出一种基于改进变分模态分解(VMD)形态谱和模糊C均值聚类(FCM)算法相结合的故障诊断方法。采用VMD方法对滚动轴承振动信号进行分解,针对分解过程中关键参数的选取,提出相关参数选择方法,并计算各固有模态函数(IMF)的能量波动系数,以获得对信号特征信息敏感的模态分量进行重构。计算重构信号的形态谱以反映信号的形态特征。通过FCM算法实现滚动轴承工作状态和故障类型的诊断。运用该方法对实测滚动轴承振动信号进行分析,并将所提方法同基于原始振动信号、经验模态分解、总体经验模态分解形态谱的故障特征提取方法进行对比。结果表明:所提方法能够更加有效提取滚动轴承信号的故障特征,实现故障类型的准确诊断。  相似文献   

20.
分析了滚动轴承故障振动信号的非线性、非平稳性特征,基于经验模态分解法(EMD)在处理此类信号中的优势,研究了滚动轴承故障信号的时频分析处理方法。通过EMD法将滚动轴承故障原始振动信号分解为多个平稳的IMF分量之和;选取前8个IMF能量值作为频域特征并结合时域特征构成故障振动信号特征集合,作为BP神经网络的输入;建立了滚动轴承故障诊断的BP神经网络模型,利用BP网络的自学习机制进行网络训练,得到了输入特征与故障模式之间的映射关系;通过对滚动轴承不同类别的故障诊断试验,验证了该方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号