首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种移动感应加热异温轧制制备钛/铝复合板的方法,应用电磁感应单独加热移动的钛板,与室温铝板轧制复合,实现钛和铝的协调变形,提高了复合板的结合强度。采用ANSYS有限元软件模拟移动感应加热过程中钛板的温度变化过程,确保在轧辊入口位置时,钛板沿宽度方向温度分布均匀。基于有限元模拟结果确定钛板移动速度和感应加热参数,并进行了移动感应加热和轧制复合实验,研究了不同压下率对于钛/铝复合板协调变形和结合强度的影响。结果表明:随着压下率的增加,钛/铝变形率差值先减小后增大,当轧制压下率为39.4%时,钛/铝轧制变形率基本一致,轧后复合板平直,界面剪切强度最高,达到124.6 MPa,剪切断裂发生在铝基体上。  相似文献   

2.
采取感应加热的方法异温轧制制备钢/铝复合板,整个过程处于一种Ar气保护氛围,研究了钢/铝复合板的结合性能和微观组织,并与冷轧工艺进行对比,分析了异温轧制工艺对结合性能的影响。结果表明:异温轧制的复合板由于钢层加热温度高于钢的动态再结晶温度,轧后碳钢组织出现等轴晶粒,发生了动态回复和再结晶,并且在钢侧近界面处产生一层平均晶粒尺寸约为5μm的等轴细晶区,相比于冷轧复合板,大大降低了复合板的加工硬化现象。异温轧制的钢/铝复合板微观界面贴合紧密,无孔洞和间隙,跨界面的Al和Fe元素扩散宽度达到2.4μm,复合板达到了良好的冶金结合状态,并且近界面的细晶区改善了板材性能,使得异温轧制复合板的剪切强度远高于冷轧板,在45%压下率下达到了85 MPa,是同等压下率冷轧复合板剪切强度(12 MPa)的7倍,冷轧板断裂发生在钢/铝结合面处,为脆性断裂,而异温轧制的复合板断裂发生在铝合金基体,剪切断面存在大量韧窝,呈现塑性断裂特征。  相似文献   

3.
试验研究了铜/铝/不锈钢三层复合板成形工艺,旨在充分利用各组元的优越性,为应用于散热及炊具等方面用复合板原料提供技术支持。依据轧制复合及热处理工艺理论,主要对铜/铝/不锈钢复合板轧制及热处理成形工艺进行了试验研究。结果表明,随着轧制压下率的增加,复合板的抗拉强度和界面结合强度逐渐增大,杯突值逐渐降低;不锈钢层与冲头接触的杯突值大于铜层与冲头接触的;最优轧制工艺参数:加热温度350℃,保温5 min~10min,压下率33.3%;350℃退火1 h获得了较为理想的抗拉强度及界面结合强度。  相似文献   

4.
采用电磁感应加热对加入不同厚度纯铁中间层的钛/钢组坯进行加热,并单道次热轧复合,短时高效地制备出高质量钛/钢复合板。研究了在快速电磁感应加热至钢板居里点770℃的条件下,不同厚度纯铁中间层对钛/钢复合板界面组织和结合性能的影响。结果表明,随着中间层厚度的降低,复合板剪切强度逐渐提高,加入0.3 mm厚纯铁中间层复合板的剪切强度达到215.05 MPa。感应加热低温轧制条件下,减少了复合板界面脆性金属间化合物的生成。纯铁中间层有效地促进了结合界面两侧基体的协调变形,同时增加了界面处基体元素间的相互扩散距离,使复合板实现了良好的冶金结合,获得了综合性能较好的钛/钢复合板。  相似文献   

5.
用热轧法制备了5A06/AZ31铝镁层状复合板材,通过金相显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、多功能力学性能试验机等仪器,研究分析了轧制工艺参数对5A06/AZ31铝镁复合板界面形貌及结合强度的影响,并分析了其结合机制。轧制温度、压下率分别控制在430℃~450℃、35%~50%时热轧制备的5A06/AZ31铝镁层状复合板具有良好的结合界面,其结合界面具有一定的元素扩散层;扩散层厚度影响着复合板的结合强度,界面结合强度随轧制变形量和温度的增加呈现先增后降的现象;在轧制温度450℃、压下率45%时出现强度峰值,约为72. 57N/mm~2。  相似文献   

6.
采用钢/钛/隔离剂/钛/钢对称结构复合板坯,研究了轧制加热温度(850-1000℃)对钛/钢复合板显微组织、基材强韧性和界面结合性能的影响。结果表明,随着轧制加热温度的升高,界面剪切性能逐步下降。加热温度影响着界面反应相的种类和厚度。在850,875,900℃条件下,轧后冷却扩散过程中,C极容易在钛/钢界面形成TiC层,阻碍了Fe向Ti中扩散,因而界面形成TiC和β-Ti反应层;在950℃和1000℃条件下,由于C在β-Ti中的扩散系数为C在γ-Fe扩散系数的10倍以上,C不能在结合界面富集形成有效的TiC屏障,此时Fe能够在Ti中充分扩散,从而形成了Fe-Ti金属间化物层、TiC层、β-Ti层和α-β Ti层。脆性反应相的厚度与加热温度呈正相关关系。脆性相种类和厚度增加使得钛/钢复合板界面剪切强度出现下降。  相似文献   

7.
针对钛/不锈钢不易直接热轧复合的问题,通过添加工业纯铁为中间层材料,采用真空轧制的方法制得钛合金/不锈钢复合板。利用扫描电子显微镜、能谱仪、X射线衍射仪和拉剪实验,研究纯铁中间层和不同温度对复合板界面组织特征和性能的影响。结果表明:添加纯铁中间层后,在轧制温度为750~950℃、压下率为20%时,随着轧制温度的升高,复合面抗剪切强度增加,在轧制温度为950℃时,复合效果最好,复合界面抗剪切强度达到248 MPa;在高温1050℃时,纯铁和钛合金的交界面上生成β-Ti和Fe_2Ti化合物会降低复合强度。  相似文献   

8.
用轧制法制备了内含微弧氧化陶瓷颗粒的6061铝合金复合板,证实了微弧氧化铝合金板轧制复合可行性。用撕裂法测试了复合板的结合强度,对复合板剥离面进行了SEM和EDS分析。结果表明,在热轧温度不低于400℃,同时压下率不低于40%的轧制条件下,铝合金板/微弧氧化铝合金板通过轧制可以实现结合。在轧制时铝合金表面硬化层、微弧氧化铝合金表面陶瓷层破裂,陶瓷颗粒卷入界面结合处,复合板两侧铝合金新鲜金属挤出实现冶金结合。  相似文献   

9.
利用真空热轧复合方法制备了钒中间层钛/钢复合板,采用SEM、EDS和XRD等分析结合界面形貌、元素扩散行为和界面相组成。结果表明:钒中间层钛/钢复合板界面实现了良好的冶金结合。与拉剪强度测试相结合,研究了钒中间层钛/钢复合板结合界面结构与力学性能。结果表明:钒中间层钛/钢复合板剪切强度均优于国家标准(140 MPa)。950℃轧制的复合板界面扩散层厚度大于900℃轧制的复合板扩散层厚度。钒中间层与Ti、Fe元素形成固溶体,有效阻止了金属间化合物TiFe和TiFe_2的产生。900℃轧制的钛钢复合板剪切强度为223 MPa,大于950℃轧制的复合板剪切强度。对剪切断口的分析表明裂纹多沿钒铁固溶体产生并扩展。  相似文献   

10.
对爆炸复合的钛/钢复合板进行了一道次60%的温轧,研究了一道次温轧钛/钢爆炸复合板的近界面微观组织及剪切强度。结果显示,一道次温轧工艺可以引起钛层和钢层近界面组织的显著剪切变形。由于剪切变形,钛层形成了RD分散织构。钢层含有高组份的旋转立方织构及低组份的γ纤维织构。对比常规多道次轧制方法,由于剪切变形可细化界面化合物,使得一道次温轧钛/钢复合板抗剪切强度得到提升。  相似文献   

11.
采用热轧工艺一道次制备出AZ31镁合金/L2纯铝复合板材,并研究了退火工艺对复合板结合强度的影响。结果表明,在50 %压下率和425 ℃轧制条件下,AZ31和L2板材经单道次热轧变形后完全复合,复合板外观完整、无宏观裂纹,结合面剪切强度为29 MPa。退火温度≥300 ℃时,AZ31/L2复合板界面处生成硬脆的中间相,导致结合强度严重下降。经250 ℃×15 MPa的热压退火处理后,复合板结合强度达到37 MPa,剥离面内密布大量条带状撕裂棱,热压退火工艺可以提高复合板的结合强度。  相似文献   

12.
研究了热轧工艺制度和Q235A普碳钢/304不锈钢复合板结合界面厚度的关系。结果表明,大于30%以上的大压下率试样剪切强度符合国标要求;大压下率轧制试样结合界面间元素扩散程度增大,界面厚度增加,复合板的结合强度也增强。  相似文献   

13.
镁/铝叠层复合板作为一种新型的叠层复合材料,利用爆炸+轧制的工艺方法生产镁/铝叠层复合板能够充分发挥镁合金和铝合金的性能优势。应用ABAQUS有限元分析软件对镁/铝爆炸复合板在不同热轧工艺下的热轧过程进行模拟,分析了轧制过程中温度、压下率对复合板宽展、等效应变及翘曲程度的影响。模拟结果表明:复合板宽展随温度的升高而略微降低,随轧制压下率的增大而增大;轧制过程中金属主要沿轧制方向进行流动,最大宽展率为3.5%;从复合板头部到尾部,节点的等效应力先升高、再维持水平、最后下降,界面最大等效应变随压下率的增加由0.164增大至0.523;轧制过程中,界面处金属温度高于两侧金属温度,轧制结束后温度由350℃降至237℃;轧制温度为350℃、轧制压下率为30%时,轧制效果最好。  相似文献   

14.
采用ANSYS/LS-DYNA软件建立了铜/铝/铜复合板异步轧制成形弹塑性有限元模型,将有限元模型仿真结果同实际轧制实验结果进行对比,证明有限元模型的准确性。通过对异步轧制变形区进行分析和研究发现,在相同条件下,与同步轧制相比,异步轧制可以有效地减小轧制正应力,并增大后滑区摩擦应力;异步轧制搓轧区可以促进复合板结合界面的金属流动,在其他轧制条件相同的情况下,压下率越大,搓轧区越小,异步速比越大,搓轧区越大;靠近快速辊一侧结合界面铜板的等效应变要大于靠近慢速辊一侧结合界面铜板的等效应变,中间铝板的等效应变大于两侧铜板。随着异步速比的增大,复合板结合界面上两种金属的等效应变的差距逐渐缩小,变形将会更加协调,有利于增强复合板的结合强度。整体研究对铜铝复合板制备工艺的优化提供了理论依据。  相似文献   

15.
研究了冷轧铜/铝复合板横向界面结合强度,运用有限元方法模拟了铜/铝复合板结合界面处中性面位置的法向应力和金属的横向流动速度,通过单道次冷轧制备了55%~75%压下率的铜/铝复合板,研究了复合板的结合强度、界面和剥离界面。结果表明,在同一压下率下,从复合板边部到中部,结合界面处中性面位置的法向应力显著增大,金属的横向流动速度逐渐减小;结合界面处中性面位置的法向应力和边部金属的横向流动速度随压下率增大而逐渐增大;55%~75%压下率时,中部界面平直、光滑,边部界面出现缩孔和裂缝。冷轧铜/铝复合板中部结合强度比边部高。  相似文献   

16.
用有限元分析软件ANSYS/LS-DYNA研究了6061Al/AZ31B/6061Al爆炸复合板的界面轧制变形行为。分析了复合板轧制方向和宽度方向的界面节点在不同轧辊转速和相对压下率下最大等效应力和应变的变化规律,并进行了定量比较。模拟结果表明:不同轧制条件下,镁铝复合板界面各节点的最大等效应变值和应力值呈现不同的分布特点。最大轧制力随相对压下率和轧辊转速而变化。在轧辊转速30 r/min、相对压下率20%时,可以获得较好质量的轧制复合板。结果能为镁铝爆炸复合板的轧制工艺提供理论参考。  相似文献   

17.
将实验用钢板分别在空气下电弧焊及氩气下等离子焊焊合成复合坯,加热至奥氏体化温度,保温0.5 h后分别进行3组热轧复合轧制工艺研究。用WAW-1000C电液伺服万能试验机测试复合板试样复合界面的结合强度,用ZEISS金相显微镜、XL30TMP扫描电子显微镜及EDAX能谱仪观察复合界面的金相组织。结果表明,氩气下等离子焊接轧制复合钢板性能优于空气下焊接轧制的,界面杂质少、氧化程度小。单道次压下率为15%时,复合钢板界面存在明显的间隙,随着道次压下率的增加,晶粒逐渐细化。对于氩气下等离子焊接复合坯的复合轧制,当压下率达到30%时,钢板的复合界面消失,而空气下电弧焊接复合坯的复合轧制,累积压下率达到60%时,钢板的复合界面痕迹仍然存在。  相似文献   

18.
《轻金属》2015,(10)
采用六辊轧机在不同轧制温度和轧制方式下制备了镁铝复合板,并对轧后试样进行显微组织观察和力学性能测试。结果表明,镁铝复合板的结合强度随轧制温度的升高先升高后降低,在350℃时,复合板结合强度达到峰值。不对称轧制搓轧区有剪切变形,复合界面上的变形更为剧烈,并对基体材料AZ31镁合金的晶粒细化与均匀性有着明显的作用,板材边部的晶粒不仅被压扁而且还会被拉长呈现长条状。在确定的最佳轧制工艺350℃进行不对称轧制,制备的镁铝复合板屈服强度可达153MPa,抗拉强度达230MPa。  相似文献   

19.
研究了热加工工艺对钛-钢复合板界面力学性能和显微组织的影响。测试了在A,B,C,D4种温度下热轧复合板界面的力学性能,用金相显微镜及扫描电镜观察了界面显微组织并分析了界面的成分。结果表明,在A,B2种温度下轧制的钛-钢复合板界面机械性能良好,延伸率高,其剪切强度不但可保持坯料原有的水平,甚至还略有增加。在C,D2种温度下轧制的钛-钢复合板界面机械性能相对较低,延伸率较高,但剪切强度要比爆炸复合坯料低,尤其是D加热温度,轧制后界面剪切强度急剧下降。热轧的终轧温度也是影响钛-钢复合板界面结合性能的重要因素。在低于相转变温度的合适温区热轧,且终轧温度合适,获得的钛-钢复合板结合界面无爆炸波纹,没有污染,生产的脆性化合物极细小,组织类同于钛材完全退火的等轴组织。  相似文献   

20.
本文在理论分析与模拟计算的基础上,通过热轧制备了6061 Al/AZ31B Mg/6061Al对称复合板,并对其组织结构和力学性能进行了研究。首先通过经典复合板理论计算得到了复合板中6061Al的最佳包覆率,再通过有限元方法模拟得到了复合板的最佳压下率。依据理论分析和仿真计算得到的铝的最佳包覆率和复合板的最佳压下率,对6061 Al/AZ31B Mg/6061Al复合板进行组坯,并在不同轧制温度、不同压下率和不同退火时间下进行了轧制实验,最后对实验得到的复合板进行了微观组织、拉伸性能和能谱分析。结果表明,在复合板的复合界面处的镁层中发现了再结晶晶粒,且界面上形成了由Mg17Al12和Mg2Al3组成的金属间化合物;随着轧制压下率的增大,6061 Al/AZ31B Mg/6061Al复合板的拉伸强度、延伸率和界面扩散厚度显著增大;随着轧制温度的升高,复合板的拉伸强度、延伸率和界面扩散厚度也增大;而随着退火时间的增加,复合板的拉伸强度降低,但界面扩散厚度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号