首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Journal of dairy science》2022,105(5):4692-4710
The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 38% and 19% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 72% higher in PP cows throughout the milking period, as well as 13% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 25% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 29% higher in colostrum than mature milk and 33% higher in MP cows. Linoleic acid was also 15% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 2.7-fold higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 40% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.  相似文献   

2.
The objective of this study was to determine the long-term effects of feeding monensin on milk fatty acid (FA) profile in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized block design with repeated measurements in a color-coded, double blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR [monensin TMR; regular TMR + 24 mg of Rumensin Premix per kg of dry matter (DM)] fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h). Milk samples were collected before the introduction of treatments and monthly thereafter for 6 mo and analyzed for FA composition. Monensin reduced the percentage of the short-and medium-chain saturated FA 7:0, 9:0, 15:0, and 16:0 in milk fat by 26, 35, 19, and 6%, respectively, compared with the control group. Monensin increased the percentage of the long-chain saturated FA in milk fat by 9%, total monounsaturated FA by 5%, total n-6 polyunsaturated FA (PUFA) by 19%, total n-3 PUFA by 16%, total cis-18:1 by 7%, and total conjugated linoleic acid (CLA) by 43% compared with the control group. Monensin increased the percentage of docosahexaenoic acid (22:6n-3), docosapentaenoic acid (22:5n-3), and cis-9, trans-11 CLA in milk fat by 19, 13, and 43%, respectively, compared with the control. These results suggest that monensin was at least partly effective in inhibiting the biohydrogenation of unsaturated FA in the rumen and consequently increased the percentage of n-6 and n-3 PUFA and CLA in milk, thus enhancing the nutritional properties of milk with regard to human health.  相似文献   

3.
《Journal of dairy science》2021,104(9):9813-9826
The present study investigated the effect of a high proportion of different forage species in the diet, parity, milking time, and days in milk (DIM) on milk fatty acid (FA) profile, and transfer efficiency of C18:2n-6, C18:3n-3, n-6, and n-3 in dairy cows. Swards with perennial ryegrass [early maturity stage (EPR) and late maturity stage (LPR)], festulolium, tall fescue (TF), red clover (RC), and white clover (WC) were cut in the primary growth, wilted, and ensiled without additives. Thirty-six Danish Holstein cows in an incomplete Latin square design were fed ad libitum with total mixed rations containing a high forage proportion (70% on dry matter basis). The total mixed rations differed only in forage source, which was either 1 of the 6 pure silages or a mixture of LPR silage with either RC or WC silage (50:50 on dry matter basis). Proportion of C18:2n-6 in milk FA was affected by diet, and RC and WC diets resulted in the highest proportion of C18:2n-6 in milk FA (21.6 and 21.8 g/kg of FA, respectively). The highest and lowest milk C18:3n-3 proportion was observed in WC and LPR, respectively. In addition, WC diet resulted in highest transfer efficiency of C18:3n-3 from feed to milk (12.2%) followed by RC diet (10.7%), whereas EPR diet resulted in the lowest transfer efficiency of C18:3n-3 (3.45%). The highest milk proportion of cis-9,trans-11 conjugated linoleic acid (CLA) was observed in cows fed TF (3.20 g/kg of FA), which was 23 to 64% higher than the proportion observed in the cows fed the other diets. The highest α-tocopherol concentration (µg/mL) in milk was observed in EPR (1.15), LPR (1.10), and festulolium (1.06). Primiparous cows showed higher proportion of cis-9,trans-11 CLA (2.63 g/kg of FA) than multiparous cows (2.21 g/kg of FA). Cows early in lactation had a higher proportion of long-chain FA in milk than cows later in lactation, as long-chain FA decreased with 0.184 g/kg of FA per DIM, whereas medium-chain FA increased with 0.181 g/kg of FA per DIM. Proportion of C18:2n-6 in milk from evening milking was higher than in milk from morning milking (16.7 vs. 15.8 g/kg of FA). In conclusion, the results showed that milk FA profile of cows was affected by forage source in the diet, and RC and WC increased the health-promoting FA components, particularly n-3, whereas the TF diet increased proportion of CLA isomers in milk. Proportion of CLA isomers in milk FA from primiparous cows was higher than in milk from multiparous cows. In addition, evening milk contained more FA originating from diets compared with morning milk.  相似文献   

4.
It is well established in the literature that feeding free vegetable oils rich in oleic acid results in greater milk fat secretion than does feeding linoleic-rich oils. The objectives of these experiments were to analyze the effects of oleic and linoleic acid when fed in the form of full-fat soybeans and the interaction between soybean particle size and fatty acid (FA) profile. Soybeans were included in diets on an iso-ether extract basis and diets were balanced for crude protein using soybean meal. Experiment 1 used 63 cows (28 primiparous, PP; 35 multiparous, MP) housed in a freestall barn with Insentec roughage intake control gates (Marknesse, the Netherlands). Cows were divided into 4 mixed parity groups within the same pen. Two groups were assigned to each of the 2 diets: whole raw Plenish (WP, high oleic; Dupont-Pioneer, Johnston, IA) soybeans or whole raw conventional (WC, high linoleic) soybeans. The MP cows exhibited significantly increased milk fat yield on the WP diet compared with the WC diet. A significantly greater C18 milk FA yield by the MP cows fed WP was observed compared with those fed WC, but no difference was present in the C16 or short-chain FA yield. No effects were seen in the PP cows. Experiment 2 used 20 cows (10 PP, 10 MP) in 2 balanced 5 × 5 Latin squares within parity. Cows received 5 diets: raw WP and WC diets, raw ground Plenish and conventional soybean diets (GP and GC, respectively), and a low fat control. A significant benefit was found for the GP diet compared with the GC diet for milk fat concentration and yield. In experiment 2, no difference was observed between cows fed the WP compared with the WC diet. In experiment 2, cows consuming the Plenish diets produced less milk than when consuming the conventional soybean diets. The soybean diets resulted in significantly more C18 and less <C18 FA compared with the low fat diet. The GP diet resulted in significantly more C18 FA than the GC diet and the ground soybeans resulted in less C16 FA compared with whole soybeans. In both experiments, cows fed the Plenish diets exhibited decreased trans-10 18:1, a FA often increased during milk fat depression, compared with those fed the conventional soybean diets, though differences were not observed in trans-10,cis-12 conjugated linoleic acid. These results indicate that feeding whole soybeans rich in oleic acid may result in some increased milk fat secretion compared with conventional whole soybeans containing high levels of linoleic acid. This advantage is clear for ground high-oleic soybeans compared with ground conventional soybeans.  相似文献   

5.
Changes in milk composition during a milking are well characterized, but variation in milk fatty acid (FA) profile is not well described and may affect the accuracy of in-line milk composition analyzers and could potentially be used for selective segregation of milk. Within-milking samples were collected from 8 multiparous high-producing Holstein cows (54.86 ± 6.8 kg of milk/d; mean ± standard deviation). A milk-sampling device was designed to allow collection of multiple samples during a milking without loss of vacuum or interruption of milk subsampling. Milk was collected during consecutive morning and afternoon milkings (12-h intervals) and was replicated 1 wk later. Each sample represented approximately 20% of the milking and was analyzed for fat, true protein, and lactose concentration and FA profile. Milk fat concentration markedly increased over the course of milk let down (4.4 and 4.2 percentage units at the a.m. and p.m. milking, respectively), whereas milk fat globule size did not change. Milk protein and lactose concentration decreased slightly during milking. Modest changes in milk FA profile were also observed, as milk de novo and 16-C FA concentrations increased approximately 10 and 8%, respectively, whereas the concentration of preformed FA decreased about 7% during the milking. In agreement, mean milk FA chain length and unsaturation modestly decreased during milking (0.59 and 0.014 U, respectively). The observed changes in milk fat concentration during a milking are consistent with previous reports and reflect the dynamic nature of milk fat secretion from the mammary gland. Changes in milk FA profile are not expected to practically affect the accuracy of spectroscopy methods for determination of milk fat concentration. Furthermore, the small variation in FA profile during a milking limits the use of within-milking milk segregation to tailor milk FA profile.  相似文献   

6.
The objective of this study was to determine the effects of feeding an increased amount of extruded flaxseed with high proportions of n-3 fatty acids (FA) to transition dairy cows on performance, energy balance, and FA composition in plasma, adipose tissue, and milk fat. Multiparous Israeli-Holstein dry cows (n = 44) at 256 d of pregnancy were assigned to 2 treatments: (1) control cows were fed prepartum a dry-cow diet and postpartum a lactating-cow diet that consisted of 5.8% ether extracts; and (2) extruded flaxseed (EF) cows were supplemented prepartum with 1 kg of extruded flaxseed (7.9% dry matter)/cow per d, and postpartum were fed a diet containing 9.2% of the same supplement. The EF supplement was fed until 100 d in milk. On average, each pre- and postpartum EF cow consumed 160.9 and 376.2 g of C18:3n-3/d, respectively. Postpartum dry matter intake was 3.8% higher in the EF cows. Milk production was 6.4% higher and fat content was 0.4% U lower in the EF group than in the controls, with no differences in fat and protein yields. Energy balance in the EF cows was more positive than in the controls; however, no differences were observed in concentrations of nonesterified fatty acids and glucose in plasma. Compared with controls, EF cows had greater proportions of C18:3n-3 in plasma and adipose tissue. The proportion of n-3 FA in milk fat was 3.7-fold higher in the EF cows, and the n-6:n-3 ratio was decreased from 8.3 in controls to 2.3 in the EF cows. Within-group tests revealed that the C18:3n-3 content in milk fat in the EF cows was negatively correlated with milk fat percentage (r = –0.91) and yield (r = –0.89). However, no decrease in de novo synthesis of less than 16-carbon FA was found in the EF group, whereas C16:0 yields were markedly decreased. It appears that the enrichment of C18:3n-3 in milk fat was limited to approximately 2%, and the potential for increasing this n-3 FA in milk is higher for cows with lower milk fat contents. In conclusion, feeding increased amounts of C18:3n-3 during the transition period enhanced dry matter intake postpartum, increased milk production, decreased milk fat content, and improved energy balance. Increased amounts of EF considerably influenced the FA profile of plasma, adipose tissue, and milk fat. However, the extent of C18:3n-3 enrichment in milk fat was limited and was negatively correlated with milk fat content and yield.  相似文献   

7.
The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.  相似文献   

8.
The objective of this study was to compare the effects of ground corn or liquid molasses fed as the sole supplemental nonstructural carbohydrate (NSC) source on production performance, milk fatty acid (FA) profile, grazing behavior, and N metabolism in grazing dairy cows. A strip-grazing management system was used, with cows offered a new strip of fresh herbage after each milking, resulting in approximately 16 h of access to pasture daily. Animals were fed a diet formulated to yield an 86:14 forage-to-concentrate ratio consisting [dry matter (DM) basis] of 74% mixed grass-legume herbage, 12% mixed-mostly legume baleage, 12% NSC source, and 2% mineral-vitamin premix. Twenty Jersey cows averaging (mean ± standard deviation) 121 ± 73 d in milk in the beginning of the study were randomly assigned to 1 of 2 herbage supplementation treatments: (1) baleage plus ground corn (B+GC) or (2) baleage + liquid molasses (B+LM). Both NSC sources were fed at a flat rate of 1.6 kg of DM/cow daily. The study lasted from June to September for a total of 15 wk with data and sample collection conducted in wk 3, 7, 12, and 15. Milk samples for FA analysis were collected in wk 2, 4, 6, 8, 9, 11, and 13. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) for a randomized complete block design with repeated measures over time. Treatment × week interactions were observed for supplement DM intake, milk urea N, bite rate, urinary excretion of uric acid, and milk FA (e.g., 17:0, 18:0, cis-9,trans-11 18:2). Supplement DM intake was greatest in cows fed B+LM in wk 7, 12, and 15. Compared with cows fed B+GC, those fed B+LM had lower concentrations of milk urea N in wk 7 and 15. Milk yield, concentrations and yields of milk components, and plasma concentrations of essential AA, except Met, which was lowest with feeding B+LM, were not affected by supplementation. The plasma concentration of urea N was lowest with feeding B+LM. Cows fed B+GC spent more time grazing than those fed B+LM. Feeding B+GC increased cis-9 18:1 FA and most trans-18:1 FA in milk, whereas B+LM increased Σ odd-chain FA, Σ n-3 FA, and the trans-11 18:1 to trans-10 18:1 ratio, and decreased the n-6 to n-3 ratio. Based on current results, B+LM can entirely replace B+GC without negatively affecting milk yield or yields and concentrations of milk fat and true protein, while decreasing milk urea N, plasma urea N, and the milk trans-11 18:1 to trans-10 18:1 ratio, and increasing Σ n-3 FA.  相似文献   

9.
Experiments were designed to study compositional differences in colostrum and mature milk and during the course of milk removal. Fractionized milk samples during the course of machine milking were analyzed in single (right rear) quarters in the cisternal fraction, after 25, 50, 75, and 100% of spontaneously removed milk, in residual milk, and in composite samples from all quarters on d 2 (colostrum) and in wk 4 (mature milk) of lactation. Somatic cell counts; concentrations of dry matter, total protein, insulin-like growth factor-I, insulin, prolactin, tumor necrosis factor-alpha, Na, and Cl; gamma-glutamyltransferase activity; and electrical conductivity were higher, whereas lactose concentration was lower on d 2 than in wk 4. Concentrations of fat, potassium chloride, and osmolarity did not differ between lactational periods. During the course of milking, concentrations of dry matter, fat, lactose, and potassium, and osmolarity increased, whereas somatic cell counts, protein, insulin like-growth factor-I, insulin, prolactin, and sodium concentrations, electrical conductivity and gamma-glutamyltransferase activity decreased on d 2, and protein, sodium, and electrical conductivity decreased in wk 4. In conclusion, various milk constituents differed considerably between lactational periods (colostrum and mature milk). Milk isotonicity was only in part associated with lactose concentration. Electrical conductivity was associated with Na, K, and fat concentrations and was highest in the cisternal fraction. Changes in milk constituents during milking need to be considered if milk samples are taken for analytical purposes and to evaluate the health status of the udder.  相似文献   

10.
The effects of supplementation with grass silage and replacement of some corn in the concentrate with soybean meal (SBM) on milk production, and milk fatty acid (FA) profiles were evaluated in a replicated 4 × 4 Latin square study using 16 dairy cows grazing pasture composed of ryegrass, Kentucky bluegrass, and white clover. Each experimental period lasted for 3 wk. The 4 dietary treatments were PC, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn-based concentrate mixture (96% corn; C); PCSB, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn- and SBM-based concentrate mixture (78% corn and 18% SBM; CSB); SC, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of C concentrate; and SCSB, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of CSB concentrate. The concentrate mixtures were offered twice each day in the milking parlor and were consumed completely. Grass silage supplementation reduced dietary crude protein and concentration of total sugars, and dietary SBM inclusion increased dietary crude protein concentration and decreased dietary starch concentration. Milk yield and energy-corrected milk were increased by SBM supplementation of cows with access to grass silage. Milk protein concentration was lower in cows offered grass silage, regardless of whether SBM was fed. Dietary SBM inclusion tended to increase milk fat concentration. Plasma urea N was reduced by silage feeding and increased by SBM supplementation. Supplementation with grass silage overnight could represent a useful strategy for periods of lower pasture availability. Dietary inclusion of SBM in solely grazing cows had no effects on milk production and composition, exacerbated the inefficient capture of dietary N, and increased diet cost. Grass silage supplementation affected milk FA profiles, increasing both the FA derived from de novo synthesis and those derived from rumen microbial biomass, and decreasing the sum of C18 FA (mostly derived from diet or from mobilization of adipose tissue reserves). Milk fat concentrations of conjugated linoleic acid cis-9, trans-11, vaccenic acid (18:1 trans-11), and linolenic acid (18:3n-3) were unaffected by grass silage supplementation, suggesting that partial replacement of pasture by unwilted grass silage does not compromise the dietary quality of milk fat for humans.  相似文献   

11.
Only a few results are available on the size of human milk fat globules (MFG), despite its significance regarding fat digestion in the infant, and no data are available at <24 h postpartum (PP). We measured the MFG size distribution in colostrum and transitional human milk in comparison with fat globules of mature milk and infant formula. Colostrum and transitional milk samples from 18 mothers were collected regularly during 4 d PP and compared with mature milk samples of 17 different mothers and 4 infant formulas. The size distribution was measured by laser light scattering. For further characterization, the ζ-potential of some mature MFG was measured by laser Doppler electrophoresis. The MFG diameter decreased sigmoidally in the first days. At <12 h PP, the mode diameter was 8.9 ± 1.0 μm vs 2.8 ±0.3 μm at 96 h PP. Thus, the surface area of MFG increased from 1.1 ±0.3 to 5.4 ±0.7 m2/g between colostrum and transitional milk. In mature milk, the MFG diameter was 4 μm on average and increased with advancing lactation, whereas the droplets in infant formula measured 0.4 μm. The ζ potential of mature MFG was −7.8 ± 0.1 mV. The fat globules are larger in early colostrum than in transitional and mature human milk and in contrast with the small-sized fat droplets in infant formula. Human MFG also have a low negative surface charge compared with bovine globules. These structural differences can be of nutritional significance for the infant.  相似文献   

12.
Two experiments were conducted to evaluate the effects of nature of forage on fatty acid composition and lipolytic system in cow milk to increase the nutritional quality of dairy products. Each experiment was divided into a 4-wk preexperimental and 6- or 8-wk experimental period. During the 2 preexperimental periods, 56 midlactating Montbéliarde or Tarentaise cows received a diet based on corn silage. Subsequently, in Experiment 1,40 cowswere allocatedinto 5groups (4Montbéliarde and 4 Tarentaise cows per group) and assigned to dietary treatments: corn silage (87% of dry matter intake), grass silage (86%), ryegrass hay (90%), mountain natural grassland hay (87%), or a diet rich in concentrate (CONC, 65/35% concentrate/hay). In Experiment 2, 16 cows divided into 2 groups were fed during 3 or 6 wk mountain natural pasture (100%) or mountain natural grassland hay (87%). Principal component analysis was applied to describe the relationships among dairy performances, milk fatty acids (FA), and lipolytic system. The milk 18:0, cis-9-18:1, trans-11-18:1, and cis-9, trans-11-18:2 percentages were closely associated with 3-wk mountain natural pasture diet, whereas short- and medium-chain (mostly saturated) FA were associated with the CONC diet. Tarentaise milk fat contained a lower proportion (−3 to 4 g/100 g) of 16:0 and higher proportions of stearic acid and fewer markedly polyunsaturated FA than Montbéliarde milk fat. Milk lipolysis was lowest for CONC and corn silage groups. Milk from Tarentaise cows presented lower initial free FA and postmilking lipolysis. Diets given to cows, especially young grass, modified the milk content of FA with a putative nutritional effect on human health.  相似文献   

13.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

14.
Flaxseed has been extensively used as a supplement for dairy cows because of its high concentrations of energy and the n-3 fatty acid (FA) cis-9,cis-12,cis-15 18:3. However, limited information is available regarding the effect of ground flaxseed on dry matter intake (DMI), ruminal fermentation, and nutrient utilization in grazing dairy cows. Twenty multiparous Jersey cows averaging (mean ± standard deviation) 111 ± 49 d in milk in the beginning of the study were used in a randomized complete block design to investigate the effects of supplementing herbage (i.e., grazed forage) with ground corn-soybean meal mix (control diet = CTRL) or ground flaxseed (flaxseed diet = FLX) on animal production, milk FA, ruminal metabolism, and nutrient digestibility. The study was conducted from June to September 2013, with data and sample collection taking place on wk 4, 8, 12, and 16. Cows were fed a diet formulated to yield a 60:40 forage-to-concentrate ratio consisting of (dry matter basis): 40% cool-season perennial herbage, 50% partial total mixed ration, and 10% of ground corn-soybean meal mix or 10% ground flaxseed. However, estimated herbage DMI averaged 5.59 kg/d or 34% of the total DMI. Significant treatment by week interactions were observed for milk and blood urea N, and several milk FA (e.g., trans-10 18:1). No significant differences between treatments were observed for herbage and total DMI, milk yield, feed efficiency, concentrations and yields of milk components, and urinary excretion of purine derivatives. Total-tract digestibility of organic matter decreased, whereas that of neutral detergent fiber increased with feeding FLX versus CTRL. No treatment effects were observed for ruminal concentrations of total volatile FA and NH3-N, and ruminal proportions of acetate and propionate. Ruminal butyrate tended to decrease, and the acetate-to-propionate ratio decreased in the FLX diet. Most saturated and unsaturated FA in milk fat were changed. Specifically, milk proportion of cis-9,cis-12,cis-15 18:3, Σn-3 FA, and Σ18C FA increased, whereas that of cis-9,cis-12 18:2, Σn-6 FA, Σ odd-chain FA, Σ<16C FA, and Σ16C FA decreased with feeding FLX versus the CTRL diet. In conclusion, feeding FLX did not change yields of milk and milk components, but increased milk n-3 FA. Therefore, costs and industry adoption of premiums for n-3-enriched milk will determine the adoption of ground flaxseed in pasture-based dairy farms.  相似文献   

15.
《Journal of dairy science》2022,105(9):7373-7385
Ruminal biohydrogenation (BH) of unsaturated fatty acids (FA) reduces absorption of essential FA and can result in formation of bioactive FA that cause milk fat depression. Rates of biohydrogenation of unsaturated FA are commonly observed using in vitro systems and are not well described in vivo. Seven ruminally cannulated cows were enrolled in a 3 × 3 Latin square design study to quantify biohydrogenation of 18:1n-9, 18:2n-6, and 18:3n-3 using a recently developed in vivo BH assay. All cows were fed a common high corn silage basal diet. Biohydrogenation was quantified using a perturbation model that consisted of a bolus dose of 200 g of an oil enriched in each unsaturated FA (oleic acid, OA = 87% 18:1n-9 sunflower oil; linoleic acid, LA = 70% 18:2n-6 safflower oil; and α-linolenic acid, ALA = 54% 18:3n-3 flaxseed oil) and 12 g of 17:0 as a marker of rumen outflow. Rumen contents were sampled before and after the bolus and enrichment of the bolused FA modeled. Using first-order kinetics to model FA disappearance, the fractional rates of disappearance of 18:1n-9 was 0.597 per hour, 18:2n-6 was 0.618 per hour, and 18:3n-3 was 0.834 per hour, similar to rates previously reported with this approach. Rumen turnover of 17:0 was 0.123 per hour, 0.065 per hour, and 0.106 per hour during the OA, LA, and ALA treatments, respectively. The extents of BH were calculated to be 82.8, 90.4, and 88.6% for 18:1n-9, 18:2n-6, and 18:3n-3, respectively. Finally, compartmental modeling was used to quantify the amount of each unsaturated FA metabolized through trans-10 and trans-11 BH pathways. The recently developed in vivo BH assay was able to predict rates of BH and provide insight into rumen metabolism of individual FA and may be useful to future investigations.  相似文献   

16.
《Journal of dairy science》2022,105(1):595-608
The effects of postpartum milking strategy on plasma mineral concentrations, blood β-hydroxybutyrate (BHB) concentration, and colostrum, transition milk, and first monthly test milk yield and composition were evaluated in 90 multiparous Jersey and Jersey × Holstein crossbreed cows from a commercial farm. Before first postpartum milking, cows were randomly assigned to the following milking strategies, implemented during the first 2 d postpartum: twice-a-day milking (M2, standard industry practice, milking every 12 h; n = 22), once-a-day milking (M1, milking every 24 h; n = 24), restricted milking (MR, 3-L milking every 12 h; n = 21), and delayed milking (MD, no milking for the first 24 h, and milking every 12 h afterward; n = 23). Blood samples for total plasma Ca, P, and Mg determination were collected from enrollment every 4 h up to 48 h, and at 3 d in milk. Blood BHB concentration was determined at 3 and 11 d in milk. Colostrum and transition milk yields were recorded, and samples were collected at each study milking for IgG and somatic cell count (SCC) determinations. Information for first monthly test milk yield and composition was obtained from the Dairy Herd Improvement Association. Statistical analyses were conducted using generalized multiple linear and Poisson regressions with Dunnett adjustment and M2 as reference group for mean comparisons. Overall, plasma Ca concentration within 48 h after enrollment was higher for MD (2.17 mmol/L), tended to be higher for MR (2.15 mmol/L), and was similar for M1 (2.09 mmol/L) compared with M2 cows (2.06 mmol/L). No statistically significant differences compared with M2 cows were observed for plasma P and Mg concentrations. Colostrum and transition milk and total Ca harvested within 48 h after enrollment were lower for M1, MR, and MD compared with M2 cows. The MD strategy prevented harvesting colostrum with >50 g of IgG/L. No statistically significant effects were detected on plasma mineral concentrations at 3 DIM, blood BHB concentration, colostrum and transition milk SCC within 48 h after enrollment, or milk yield, energy-corrected milk yield, and SCC at first monthly test. Our results suggest that postpartum plasma Ca concentration may be influenced by postpartum milking strategy, without interfering with future milk yield and udder health. Further studies should evaluate whether the proposed milking strategies in early postpartum affect production, reproduction, or health.  相似文献   

17.
18.
Despite the great interest paid to protein components in colostrum, fat also plays an important role in the supply of essential nutrients to provide energy, increase metabolism, and protect the newborn calf against microbial infections. This work aimed to elucidate levels of different fat components in colostrum, in particular fatty acid (FA), triglyceride (TG), cholesterol, and phospholipid contents. Colostrum samples from primiparous and multiparous (3–5 lactations) Holstein dams, fed the same ration indoors, were collected on the first 5 d after parturition, analyzed, and compared with milk samples from the same cows collected at 5 mo of lactation. Fat content during the first 5 d of milking did not vary. However, the proportion of short-chain saturated FA increased and that of long-chain FA decreased. The concentration of n-3 FA was higher on the first day of calving than on the other days, with clear differences in the number and type of n-3 FA. Conjugated linoleic isomers and trans FA slowly increased from d 1 to 5, reaching a maximum at 5 mo of lactation. Changes in the distribution profile of TG were observed as lactation progressed, with a shift from a prevalence of high-carbon-number TG (C48–50) on d 1 to a bimodal distribution (maxima at C38 and C50) on d 5, characteristic of mid-lactation milk. Cholesterol content was high in the first hours after calving and rapidly decreased within 48 h. Colostrum sampled on d 1 also had a high content of phospholipids. Phosphatidylethanolamine and sphingomyelin were, respectively, lower and higher in the first 5 d than in mid-lactation milk. The influence of lactation number on colostrum fat composition was also considered and significant results were obtained for all FA groups (except for polyunsaturated and n-6 FA) and TG content.  相似文献   

19.
The aim of the present study was to study the effect of milking cows 4 times daily on free fatty acids (FFA) in the milk compared with milking twice daily. An experiment was performed during 2 wk in which half udders in 11 cows were milked 2 or 4 times daily. Milk yield was measured, and milk was analyzed for fat content, FFA, fatty acid composition, fat globule size, and activity of γ-glutamyl transpeptidase. Concentration of FFA was greater (1.49 mEq/100 g of fat) in milk from half udders milked 4 times daily than in milk from the half udders milked twice daily (1.14 mEq/100 g of fat). Further, it was noted that milk from the half udder milked 4 times daily contained milk fat globules with larger average diameters. Increased milking frequency increased milk yield by 9% compared with the udder half milked twice daily, but fat content and fat yield were not affected. The results are of importance for further understanding the mechanisms behind the increased content of FFA that is frequently observed in automatic milking systems.  相似文献   

20.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号