首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 19 毫秒
1.
砂土中挡墙不同变位模式主动土压力模型试验   总被引:1,自引:0,他引:1  
针对刚性挡墙不同变位模式,对基坑开挖过程中土体作用于墙上的主动土压力进行模型试验研究。试验模拟了在平移(T模式)、绕墙趾转动(RB模式)和绕墙顶转动(RT模式)3种基本刚性变位模式下挡墙土压力的变化,得到了墙背主动土压力的基本规律。试验观察发现,挡墙平移时,主动土压力呈重心下移的抛物线形,挡墙变位最大位移约0.002H时达到极限平衡状态;挡墙绕墙趾转动时,主动土压力近似呈三角形分布,约0.0035H时达到极限平衡状态;挡墙绕墙顶转动时,主动土压力呈上部大而下部小的抛物线形,约0.0025H时达到极限平衡状态。本文还将得到的主动土压力规律进行简化,得到了3种基本变位模式下的主动土压力简化图,对工程实践具有指导意义。  相似文献   

2.
两种位移模式下挡墙主动土压力的离散元模拟   总被引:1,自引:0,他引:1  
挡土墙位移模式是影响挡土墙土压力问题的关键因素之一,位移模式不同,土压力大小、分布也不同。文章用离散元软件PFC2D模拟了不同位移模式下墙后填土为砂土时挡墙土压力问题,分析了总土压力随位移变化情况,土压力分布情况及土体滑裂面形状、顶宽等问题。研究结果表明:土压力分布,大小与挡土墙位移模式有关,挡土墙背离土体平移即T模式下土压力分布呈线性、而绕墙底转动即RB模式下土压力基本呈线性分布,挡土墙位移较小时,土体便能达到主动极限状态;T模式下滑裂面为通过墙底的平面,而RB模式下滑裂面为未通过墙底的平面,T模式下滑裂面顶宽大于RB模式下相应值。  相似文献   

3.
采用无黏性砂开展平动模式(T模式)、绕墙底转动模式(RB模式)、绕墙顶转动模式(RT模式)下有限宽度土体模型试验,利用微型土压力计测试了移动挡墙上的土压力,利用数字图像相关法分析土体变形图像得到了剪切应变(滑裂面)、水平和竖向位移等变形特征。结果表明:(1)T模式下,有限宽度土体滑裂面经过移动挡墙墙踵、固定挡墙墙顶,被动土压力值大于库仑被动土压力,位于挡墙下部H/3范围的土压力受B/H影响较大;(2)RB模式下,滑裂面呈现为以挡土墙顶为中心的多道弧线,弧线半径为H/3~H,被动土压力为“鼓”形分布,当B/H≤1.0时,受固定挡墙影响,滑裂面半径缩小;(3)RT模式下,滑裂面线型特征与T模式相似,被动土压力较大值位于挡墙下部,当B/H减少时,挡墙下部土压力值增大,土体滑裂面范围缩小;(4)不同被动变位模式下,土体位移均可形成大小不同的水平土拱、竖向土拱,土拱形状和大小与变位模式、B/H均密切相关,两土拱的外边缘与滑裂面曲线基本一致。  相似文献   

4.
墙后有限宽度无黏性土主动土压力试验研究   总被引:2,自引:0,他引:2  
针对无黏性土体,开展了刚性挡墙平动、绕墙底转动和绕墙顶转动3种墙体主动变位模式情况下墙后有限宽度土体土压力试验。通过观察墙后不同宽度土体的破坏过程及对土压力的全程量测,对其破坏模式及土压力分布规律进行了探讨。试验结果表明,墙后有限宽度土体的破坏面为一连续曲面,随着墙后土体宽度的增加,土体破坏面逐渐向外侧偏移,最终趋于某一固定位置,但始终位于库仑破坏面内侧。土压力值监测表明,库仑土压力理论并不适用于有限宽度土体。当填土宽度为有限宽度时,土压力值小于库仑主动土压力值,其差距随土体宽度减小而逐渐增大。当墙体平动时,土压力值沿墙高先增大后减小;墙体绕墙底转动时土压力值则呈线性增长趋势;而当墙体绕墙顶转动时,在挡墙上部出现了明显的土拱效应。  相似文献   

5.
采用自主设计自动控制模型箱,开展了墙后有限宽度浸水无粘性土体在绕墙底转动、平动及绕墙顶转动3种位移模式下的主动土压力试验,并通过ABAQUS进行数值模拟,分析研究了墙后不同宽度土体的破坏形式及其土压力分布规律。研究结果表明,3种位移模式下,有限土体宽度较窄时破裂面被固定挡墙截断,随着填土宽度的增加破裂面开始延伸至填土表面,并最终稳定于库伦破裂面内侧。3种位移模式下的有限土体土压力分布均明显小于水土分算值,且随填土宽度的增加而逐渐接近水土分算理论值;绕墙底转动时土压力分布接近三角形分布,平动时土压力随土体宽度增加渐呈“勺型”分布,而绕墙顶转动时则呈“S”型分布规律。  相似文献   

6.
采用自主设计自动控制模型箱,开展了墙后有限宽度浸水无粘性土体在绕墙底转动、平动及绕墙顶转动3种位移模式下的主动土压力试验,并通过ABAQUS进行数值模拟,分析研究了墙后不同宽度土体的破坏形式及其土压力分布规律。研究结果表明,3种位移模式下,有限土体宽度较窄时破裂面被固定挡墙截断,随着填土宽度的增加破裂面开始延伸至填土表面,并最终稳定于库伦破裂面内侧。3种位移模式下的有限土体土压力分布均明显小于水土分算值,且随填土宽度的增加而逐渐接近水土分算理论值;绕墙底转动时土压力分布接近三角形分布,平动时土压力随土体宽度增加渐呈"勺型"分布,而绕墙顶转动时则呈"S"型分布规律。  相似文献   

7.
 基坑开挖将诱发不同程度的地面沉降。利用分离变量法求解平面应变问题的位移平衡方程通解,并将基坑挡墙变位视为已知的位移边界,以揭示不同挡墙变形所诱发的墙后地表沉降规律。首先以墙体平移和绕墙趾刚性转动2种基本位移模式作为基本解,通过叠加原理进而得到绕墙顶刚性转动和三角形鼓胀位移的解析。分析表明,平移和绕墙脚转动的位移模式下,墙后地表沉降为向上拱曲形态,最大沉降紧靠墙背处,而当墙体绕墙顶转动和向外三角形变位时,墙后地表沉降为向下凹槽形态,最大沉降处在距墙背一定距离的某一位置,这与既有的经典方法预测相一致。最后,将墙后沉降曲线与既有弹塑性分析及软土地基的现场监测作对比,验证解析方法的合理性。  相似文献   

8.
 使用角钢和高强度的有机玻璃,结合按照原型比例设计的尺寸,自制挡土墙模型箱。测试挡土墙在不同运动状态下,墙后土体的水土压力分布,获得剪切带的细观参数。在模型试验基础上,通过二次开发PFC2D颗粒流程序对砂土挡土墙进行离散元仿真模拟。研究不同位移模式:平移(T)、绕墙底转动(RB)、绕墙顶转动(RT),以及2种组合位移模式:绕墙底以下某点转动(RBT)、绕墙顶以上某点转动(RTT)下挡土墙被动破坏机制。分析挡土墙运动过程中侧压力的变化、土体位移场和变形以及挡土墙到达一定位移时颗粒集合体内部的剪应变率分布。通过对比分析模型试验结果与数值模拟结果,结果表明,墙后土体水土压力的模拟结果与试验结果吻合很好,反映水土压力的分布规律。  相似文献   

9.
刚性挡墙被动土压力模型试验研究   总被引:34,自引:4,他引:34       下载免费PDF全文
为了研究刚性挡墙被动土压力的形成机理 ,介绍了一个试验模型的制作 ,通过模型试验对砂土在不同变位情况 ,即墙体的平移 (T模式 )、绕墙顶上某点转动 (RTT模式 )和绕墙底下某点转动 (RBT模式 ) ,得出刚性挡墙被动土压力的试验结果 ,最后分析了不同变位条件下被动土压力的变化规律。  相似文献   

10.
以某山区公路旧路拓宽改造工程中新建的衡重式加筋土路肩挡土墙为原型,设计了4组模拟墙体实际位移形态的土工离心模型试验,讨论了墙后土体压实度和土中加筋对墙背土压力和路基填土变形的影响规律。试验表明:①墙后土体加筋对减小墙背承受的土压力作用随填土压实度的提高而趋于明显,主要影响区域位于上墙背的下半部分,压实度由88%增至95%会引起上墙背土压力分布由近似线性增大演化为折线型变化;②衡重台对其上覆填土存在托举效应,致使下墙背的土压力大幅减小,其影响范围约为衡重台以下约1/3下墙高度;③墙后土体加筋能提高路基填土的抗变形能力,减小因墙体侧向位移引起的填土表面下沉,对降低新旧路基间的不均匀变形效果显著。  相似文献   

11.
回填EPS混合土的防滑悬臂式挡墙地震稳定性分析   总被引:1,自引:0,他引:1  
以一种带防滑齿的"T"型悬臂式挡土墙为对象,采用振动台模型试验揭示了分别回填EPS混合土和天然南京细砂时的挡墙地震稳定性特征。分析并比较了墙–土体系的地震反应以及墙背动土压力分布,重点讨论了试验的防滑悬臂式挡墙位移模式以及回填土性质对墙背动土推力的影响。试验结果表明,回填EPS混合土时,填土地表加速度反应相对更小。回填土的动土推力对墙体转动位移的贡献随激励峰值的增大而增大;墙–土惯性相互作用效应与回填土的动力变形模式密切相关。两种回填料下的墙背动土压力分布形态具有显著差异;砂土–挡墙体系的动土推力与地表峰值加速度间趋向非线性关系,作用点接近2/3墙高。回填EPS混合土时两者更接近线性关系,且动土推力作用点接近1/3墙高。两种体系的动土推力作用点随地表峰值加速度增大均略有下移。基于试验结果与几种经典的解析方法预测结果比较,给出了EPS混合土柔性挡墙抗震分析的几点建议。  相似文献   

12.
根据土体微分单元体的静力平衡条件,建立了挡土墙绕墙顶转动情况下被动土压力分布的计算表达式,同时进行了被动土压力分布、合力及作用点与库仑土压力、实测结果的分析比较。结果表明:该公式很好地反映了实测曲线的非线性分布,同时被动土压力合力与库仑被动土压力基本相同,合力作用点接近于0.27倍墙高处。  相似文献   

13.
桩板墙地震动力特性的大型振动台模型试验研究   总被引:1,自引:1,他引:0  
 通过1个比尺1∶8的二级支护边坡大型振动台模型试验,研究地震条件下桩板式挡墙加速度、动位移和动土压力等的响应特性,模型试验以汶川波、大瑞人工波和Kobe波3种地震波作为振动台激振波,汶川波采用水平(X)向、竖直(Z)向和水平竖直(XZ)双向3种激振方式,大瑞人工波和Kobe波采用水平竖直(XZ)双向1种激振方式,研究地震波作用方向和方式以及地震波形等地震动参数对桩板式挡墙地震动力响应特性的影响规律。研究表明:桩板式挡墙加速度、动位移和动土压力等的响应特性,主要受水平向地震波作用的影响,且与地震波类型、激振方向和方式以及测点位置有关。加速度动力响应峰值呈现出沿墙高非线性增大的特征,因而在采用拟静力法时,有必要在考虑支挡结构组合方式、边坡特性及地震波作用方式等影响的基础上,采用合适的地震荷载拟静力值的放大系数。动位移响应峰值和永久位移值呈现出非线性响应特性,水平竖直(XZ)双向地震波激振下,桩板墙主要产生离开土体向边坡外侧平移的动位移模式。动土压力响应峰值沿墙高呈现出两头小中间大的非线性分布特征。  相似文献   

14.
张宏博    陈奇    孙玉海  孟庆宇    于瀚    宋修广   《建筑科学与工程学报》2019,(6):46-54
为了研究锚拉式挡土墙在非极限状态下土压力分布及墙体位移变化规律,从力学角度分析了锚拉式挡土墙的作用机理,并基于加筋原理揭示了设置锚杆具有提高墙背土体强度的作用。设计制作了室内模型试验装置,开展了一系列不同预应力水平、不同竖向荷载及二者耦合作用的室内试验。通过分析试验数据,得到了不同影响因素下的土压力合力变化规律及合力作用点位置。结果表明:锚拉式挡土墙由于锚杆的侧向约束作用,墙背土压力峰值出现在锚杆位置处; 分级施加竖向荷载,墙身呈现底部位移略大的平动模式(T模式)外倾; 分级施加锚杆预应力,墙身呈现底部位移略大的向外平动位移模式(T模式); 二者耦合作用下,墙体呈平动叠加绕墙底转动模式(T+RB模式)内倾,但位移量较小; 墙背土压力在预应力、竖向荷载及二者耦合作用下均介于静止土压力与被动土压力之间; 所得结论对工程实践具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号