首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
多元醇类表面活性物质的浊点行为在钻井液中的应用   总被引:4,自引:4,他引:0  
介绍了近期多元醇类表面活性物质的基本物理化学性能研究,如临界胶束温度CMT、临界胶束浓度CMC、浊点行为及影响因素.对于多元醇型非离子表面活性物质,随浓度升高,临界胶束温度逐步降低;多元醇的临界胶束浓度随温度增加急剧下降;多元醇的浊点不仅取决于非离子表面活性剂的分子结构,而且受添加物(如无机电解质、极性有机物、表面活性剂、多元醇等)的影响很大,同时与非离子表面活性剂的浓度也有关系.研究了温度对多元醇钻井液体系润滑性能的影响,探讨了多元醇类表面活性物质作为钻井液润滑剂的作用机理.  相似文献   

2.
聚醚型非离子表面活性剂的浊点及其影响因素   总被引:5,自引:0,他引:5  
浊点 (Tp)是聚醚型非离子表面活性剂的一个重要特征 ,本文综述了影响浊点的因素。添加离子型表面活性剂和可溶性有机物可以提高浊点 ,添加电解质和不溶性有机物使浊点降低 ,两性表面活性剂对浊点的影响尚有待进一步研究  相似文献   

3.
烯丙醇聚氧烷基醚的浊点及影响因子   总被引:1,自引:0,他引:1  
 烯丙醇聚氧烷基醚(AAP)是一种非离子表面活性剂。通过实验测定了AAP的浊点,考察了分别添加非离子表面活性剂聚乙二醇(PEG)、离子表面活性剂十二烷基苯磺酸钠(LAS)、极性溶剂醇以及LAS和醇的混合物后,AAP浊点的变化。结果表明,PEG的加入基本不影响AAP的浊点;LAS或LAS与乙醇混合物的加入可改变AAP的浊点。随着LAS、LAS-乙醇混合物的加入,AAP的浊点大幅度上升;随着它们加入量的增加,AAP的浊点进一步提高。添加醇类溶剂后,AAP的浊点随醇的结构和性质的不同而升高或降低。  相似文献   

4.
《精细石油化工》2017,(3):70-74
通过表面张力(滴体积法)、胶束聚集数、浊点的测定,研究了异丙苯磺酸钠(NaCS)、二甲苯磺酸钠(NaXS)对非离子表面活性剂脂肪醇聚氧乙烯醚9(AEO_9)、阴离子-非离子表面活性剂脂肪醇聚氧乙烯醚硫酸钠(AES)及十二烷基硫酸钠(SDS)的表面化学性能、胶束聚集数的影响以及对AEO_9浊点的影响。结果表明,NaCS可使AEO_9的浊点由73.8℃提高至86.2℃,但其cmc降低幅度较小,γ_(cmc)无明显变化;随着NaCS、NaXS的加入,AES、SDS的cmc、γ_(cmc)明显降低,胶束聚集数先突然增大,后缓慢降低。  相似文献   

5.
非离子、阳离子表面活性剂与驱油表面活性剂的协同效应   总被引:1,自引:0,他引:1  
研究了驱油表面活性剂与非离子、阳离子表面活性剂的协同效应.表面活性剂之间的复配效果不仅与表面活性剂之间能否形成紧密的混合胶束有关,而且与油相性质如碳数、分子结构及水相性质如矿化度及电解质组成有关.当油相碳数较低时,Tween类非离子表面活性剂的亲油基在界面上插入油层较浅,在和阴离子表面活性剂形成混合胶束时其庞大体积的亲水基在水相中插入较深,对混合胶束形成的空间位阻作用较小,因此可形成较紧密的胶束而改善界面活性.Tween 80由于其亲油基碳链较长,在和阴离子表面活性剂形成混合胶束时,其庞大体积的亲水基离得较远,对混合胶束形成的空间位阻作用较小,而使减小阴离子表面活性剂离子端电荷间静电作用的屏蔽效应居于优势,因而界面活性有较大改善.阳离子表面活性剂CTMAB加入阴离子表面活性剂中由于其正负离子之间的引力使胶束更加紧密,界面活性得到改善,但只发生在矿化度较低的情况下.当矿化度较高时,反离子浓度增加,从而压缩表面活性剂的双电层,减弱了表面活性剂离子头上电荷对周围表面活性剂离子头的电荷作用力.  相似文献   

6.
为了进一步改善脂肪醇聚氧乙烯醚类非离子表面活性剂的表面活性,以脂肪醇聚氧乙烯醚(AEO)和甘油为主要原料,分步合成了系列非离子表面活性剂脂肪醇聚氧乙烯聚二甘油醚,并研究了该系列表面活性剂的表面活性、乳化性能和泡沫性能。研究结果表明,AEO7聚二甘油醚和AEO9聚二甘油醚的浊点相比于其对应的AEO均提高了3℃;相同条件下,系列脂肪醇聚氧乙烯聚二甘油醚的表面张力均略高于其对应的AEO,其中AEO3聚二甘油醚、AEO5聚二甘油醚、AEO7聚二甘油醚和AEO9聚二甘油醚的临界胶束浓度值分别为3.16×10-4、1.00×10-3、3.14×10-3和5.01×10-3mol/L,均大于其对应AEO的;泡沫性能和乳化性能分析显示脂肪醇聚氧乙烯聚二甘油醚具有优良的泡沫稳定性和乳化性能,其中AEO9聚二甘油醚的泡沫稳定性达82.14%。  相似文献   

7.
对反胶束体系增溶水进行了研究,比较了阴离子型、阳离子型和非离子型表面活性剂形成的反胶束溶液的增溶水量。结果表明,阴离子型表面活性剂形成的反胶束溶液的增溶水量比阳离子型和非离子型表面活性剂形成的反胶束溶液增溶水量大。增溶水量较大的反胶束体系适合于萃取大相对分子质量的水溶性物质,增溶水量较小的反胶束体系可用于萃取小相对分子质量的水溶性物质。  相似文献   

8.
1.电脉冲变频共振除防垢技术简介 通常水中80%的水分子是由氢键缔合成水分子团的形式存在,这种水分子团对碳酸钙(水垢)的溶解程度较低,使水垢很容易析出,变频共振就是向水中施加一个与其自然频率相同的频率,从而引起水分子团产生共振。共振的结果,使氢键断开,水分子团变成单个的极性水分子,极微小的水分子可以渗透、包围、疏松、溶解,去除加热炉、锅炉等热交换系统内的老垢,因而提高了水的活化性和对水垢的溶解度。同时,浮在水中的钙离子和碳酸根离子相互碰撞,形成特殊的文石碳酸钙体,其表面无电荷,因此,不能再吸附在热交换部件上,从而达到除垢、防垢的目的。  相似文献   

9.
采用表面张力法研究了9种阴-非离子型Gemini表面活性剂在水溶液中胶束化的热力学性质,并考察了温度与分子结构对胶束化的影响。实验结果表明,阴-非离子型Gemini表面活性剂在水溶液中胶束化是一个自发过程,主要来自熵驱动,温度升高不利于胶束化,且标准熵变对标准吉布斯自由能变的贡献有下降趋势,标准焓变对标准吉布斯自由能变的贡献有增大趋势;阴-非离子型Gemini表面活性剂在水溶液中胶束化存在焓熵补偿现象,焓熵补偿温度均在(307±2)K范围内,基本不随阴-非离子型Gemini表面活性剂的分子结构的改变而变化,随联接链增长或氧乙烯结构单元数目的增加,形成胶束的能力与稳定性均提高,随温度的升高,形成胶束的能力与稳定性均下降;临界胶束浓度的对数与联接链长度呈线性关系。  相似文献   

10.
为研究不同疏水链长的烷醇酰胺聚氧乙烯醚型非离子表面活性剂性能差异,以脂肪酸、甲醇、乙醇胺和环氧乙烷为原料,通过3步反应制备了一系列具有9个环氧乙烷(EO)不同疏水链长(C14-NEO9为肉豆蔻酸单乙醇酰胺聚氧乙烯醚、C16-NEO9为棕榈酸单乙醇酰胺聚氧乙烯醚、C18-NEO9为油酸单乙醇酰胺聚氧乙烯醚)的聚氧乙烯醚型非离子表面活性剂。经过红外、质谱验证了目标产物,测定了该系列非离子表面活性剂的浊点、临界胶束浓度(cmc)、相应的表面张力(γcmc)和胶束聚集数。结果表明,C14-NEO9、C16-NEO9的浊点大于99℃,C18-NEO9的浊点为63℃;在25℃时,C14-NEO9、C16-NEO9和C18-NEO9的cmc分别为0.093,0.082 g/L和0.081 g/L,γcmc分别为33.80,33.93 mN/m和34.30 mN/m;C14-NEO9、C16-NEO9和C18-NEO9的胶束聚集数呈依次减小的趋势。  相似文献   

11.
采用流变方法研究了胜利油田常用阴离子表面活性剂和非离子型表面活性剂对聚丙烯酰胺流变性的影响。结果表明,阴离子表面活性剂十二烷基苯磺酸钠、石油磺酸盐和非离子表面活性剂TW-80与聚合物混合溶液随着剪切速率的增加,溶液呈现假塑性流体;随着表面活性剂浓度的增大,溶液更接近牛顿流体。但非离子表面活性剂聚氧乙烯(9)月桂醇醚不同。通过研究盐度对聚合物溶液流变性的影响,发现单一聚合物体系的表观黏度随着盐度的增大而降低,混合溶液加入高浓度的盐后变为牛顿流体,剪切应力与速率基本呈线性关系。  相似文献   

12.
以脂肪醇聚氧乙烯醚(AEO_9)与丙三醇缩水甘油醚为原料,在碱性条件下,合成了一种低聚非离子表面活性剂。用红外光谱以及电喷雾电离质谱对其结构进行表征,测定其临界胶束浓度为1.99×10~(-5)g/mL。将低聚非离子表面活性剂与十六烷基三甲基氯化铵复配成混合表面活性剂,制备了W/O柴油微乳液,并以油、水、助表面活性剂和混合表面活性剂为三组分做出拟三元相图。通过考察表面活性剂的复配比例及混合表面活性剂与助表面活性剂的比例对微乳区的影响,得到最佳组成为:m(低聚非离子表面活性剂):m(十六烷基三甲基氯化铵)=1:4,m(助表面活性剂):m(混合表面活性剂)=1.5:1。溶水量随着盐浓度的增加而减小。  相似文献   

13.
清洁压裂液的研究与应用   总被引:3,自引:0,他引:3  
介绍了以粘弹性表面活性剂为主剂的清洁型水基压裂液特点,清洁型水基压裂液包括季铵盐类阳离子表面活性剂体系、甜菜碱型阳离子表面活性剂体系、非离子表面活性剂体系、阴离子和非离子及两性表面活性剂复合体系、疏水缔合物体系。简要介绍了各体系的主要配方、使用的主剂和辅助添加剂及各体系优缺点。清洁型水基压裂液在国内外油田现场应用均取得良好的施工效果,其用量约是聚合物压裂液用量的50%。  相似文献   

14.
The rheology of an asphaltic heavy crude oil-in-water emulsions stabilized by an anionic (RN) and a nonionic (TEP) surfactants individually or in a mixture has been studied. The investigated crude oil has a non-Newtonian, time dependent, shear thickening, rheopectic behavior with a relatively high yield stress. The relatively high yield stress of this crude oil is attributed to the presence of a relatively high asphaltene and resins content. The viscosity ofhe crude oil decreases when it is emulsified with synthetic formation water in the form of an oil-in-water type of emulsion using a nonionic or an anionic surfactant. It has been found that, the maximum oil content required for forming an oil-in-water emulsion of acceptable viscosity is the 60% oil-containing emulsion. However, the 70% oil-containing emulsion is not an oil-in-water type of emulsion but it is rather a complicated mixture of oil-in-water-in-oil type of emulsion. The presence of the anionic and the nonionic surfactants together has a synergistic effect in decreasing the total surfactant concentration required to stabilize the emulsion and to form low viscosity emulsion. It has been emphasized that the nonionic surfactant has a positive contribution in forming emulsions with low viscosity. Meanwhile, the anionic surfactant contributes in stabilizing the emulsion at lower concentrations. Flocculation point measurements showed that the added surfactants caused no sign of asphaltene deposition. This implies that it is safe to use the investigated surfactants in forming oil-in-water emulsion for viscous asphaltic crude oils without any fear of asphaltene deposition.  相似文献   

15.
The rheology of an asphaltic heavy crude oil-in-water emulsions stabilized by an anionic (RN) and a nonionic (TEP) surfactants individually or in a mixture has been studied. The investigated crude oil has a non-Newtonian, time dependent, shear thickening, rheopectic behavior with a relatively high yield stress. The relatively high yield stress of this crude oil is attributed to the presence of a relatively high asphaltene and resins content. The viscosity ofhe crude oil decreases when it is emulsified with synthetic formation water in the form of an oil-in-water type of emulsion using a nonionic or an anionic surfactant. It has been found that, the maximum oil content required for forming an oil-in-water emulsion of acceptable viscosity is the 60% oil-containing emulsion. However, the 70% oil-containing emulsion is not an oil-in-water type of emulsion but it is rather a complicated mixture of oil-in-water-in-oil type of emulsion. The presence of the anionic and the nonionic surfactants together has a synergistic effect in decreasing the total surfactant concentration required to stabilize the emulsion and to form low viscosity emulsion. It has been emphasized that the nonionic surfactant has a positive contribution in forming emulsions with low viscosity. Meanwhile, the anionic surfactant contributes in stabilizing the emulsion at lower concentrations. Flocculation point measurements showed that the added surfactants caused no sign of asphaltene deposition. This implies that it is safe to use the investigated surfactants in forming oil-in-water emulsion for viscous asphaltic crude oils without any fear of asphaltene deposition.  相似文献   

16.
An experiment on effects of composite promoting agents composed of surfactants and liquid hydrocarbons on hydrate formation was conducted and the hydrate formation temperature,pressure,induction time and rate in the presence of different composite promoting agent packages were measured.The surfactants used covered sodium dodecyl sulfate(SDS),sodium dodecyl benzene sulfonate(SDBS) and 2-octyl sodium dodecyl sulfate(GC20S),and the liquid hydrocarbon additives utilized included cyclopentane(CP) and methyl cyclohexane(MCH).It appeared that all these combinations of composite promoting agents could promote hydrate formation.The type II hydrate formation conditions using composite promoting agents composed of CP and GC20S were the mildest and the induction time was the shortest;whereas the type H hydrates formation conditions using composite promoting agents composed of MCH and GC20S were the mildest and the induction time was also the shortest.  相似文献   

17.
Paraffin wax deposition from fuel oil at low temperature is one of the serious and long-standing problems in petroleum industry. The addition of pour point depressants (PPD) has been proved to be an efficient way to inhibit wax deposition. The influence of PPD on wax precipitation at low temperature was investigated. A different ethoxylated nonionic surfactants were prepared by reacting natural fatty acids (myristic acid and palmitic acid) with polyethylene glycol of different molecular weight. The synthesized nonionic surfactants were confirmed by NMR and FTIR spectroscopy. The surface properties of the synthesized surfactants, including the critical micelle concentration, effectiveness (πCMC), maximum surface excess (Гmax), and minimum surface area (Amin) were determined. The efficiency of ethoxylated nonionic surfactants was evaluated as cloud and pour point depressant for fuel oil was discussed. The results indicate that C16E7 surfactant posse's good cloud and pour point depressing performance. The effect of additive type and compatibility additive with natural wax dispersant on the wax crystallization behavior at low (0°C) was evaluated. Photomicrographs showed that wax morphology was greatly modified to fine dispersant crystal of compact size. Correlation between wax modification and pour point depression appear to be merely qualitative in such heterogeneous fuel systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号