首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nudicaulins are unique alkaloids responsible for the yellow color of the petals of some papaveraceaous plants. To elucidate the unknown biosynthetic origin of the skeleton, a 13CO2‐pulse/chase experiment was performed with growing Papaver nudicaule plants. 13C NMR analysis revealed more than 20 multiple 13C‐enriched isotopologues in nudicaulins from the petals of 13CO2‐labeled plants. The complex labeling pattern was compared with the isotopologue composition of a kaempferol derivative that was isolated from petals of the same 13CO2‐labeled plants. The deconvolution of the labeling profiles indicated that the nudicaulin scaffold is assembled from products or intermediates of indole metabolism, the phenylpropanoid pathway, and the polyketide biosynthesis. Naringenin‐type compounds and tryptophan/tryptamine are potential substrates for the condensation reaction finally generating the aglycone skeleton of nudicaulins.  相似文献   

3.
In their natural environment, plants are synchronously confronted with mutualists and antagonists, and thus benefit from signals that contain messages for both functional groups of interaction partners. Floral scents are complex blends of volatiles of different chemical classes, including benzenoids and terpenoids. It has been hypothesized that benzenoids have evolved as pollinator attracting signals, while monoterpenoids serve as defensive compounds against antagonists. In order to test this hypothesis, we reduced terpene emission in flowers of Phlox paniculata with specific biosynthetic inhibitors and compared the responses of Lasius niger ants to natural and inhibited floral scent bouquets. While the natural odors were strongly repellent to ants, the bouquets with a reduced emission rate of terpenoids were not. The loss of the flowers’ ability to repel ants could be attributed predominantly to reduced amounts of linalool, a monoterpene alcohol. Flying flower visitors, mainly hoverflies, did not discriminate between the two types of flowers in an outdoor experiment. Since individual compounds appear to be capable of either attracting pollinators or defending the flower from enemies, the complexity of floral scent bouquets may have evolved to allow flowers to respond to both mutualists and antagonists simultaneously.  相似文献   

4.
Floral color has been shown to influence flower selection by butterflies, but few studies have investigated the role of floral scent. In this study, adults of Heliconius melpomene L. (Lepidoptera: Nymphalidae: Heliconiinae) were tested in two-choice bioassays to investigate their ability to distinguish floral scent of the butterfly pollinated plant Lantana camara L. (Verbenaceae) from other plant scents. The relative importance of floral scent vs. color was also studied. Butterfly foraging behavior was measured as probing with proboscis. This probing, on floral models varying in scent and color, was timed. When given a choice of floral and vegetative scents of L. camara, newly emerged butterflies preferred floral scent, indicating an innate response to floral scents. When butterflies were conditioned to L. camara floral scent by offering the scent with yellow color and sugar water, yellow color elicited stronger feeding responses than did the floral scent. However, the floral scent of L. camara was preferred to that of the novel species Philadelphus coronarius L. (Hydrangiaceae). The floral scent of L. camara was dominated by tepenoid compounds, while that of P. coronarius by fatty acid derivatives, thus demonstrating totally different compositions. It is concluded that, while H. melpomene butterflies often use visual floral traits when selecting which flowers to visit, floral scents elicit behavioral responses that initiate and maintain foraging on flowers.  相似文献   

5.
We investigated the scent composition of individual flowers of Ophrys sphegodes, its alteration following pollination, and of picked flowers by day and at night. Odor samples were collected by headspace sorption and analyzed by gas chromatography and mass spectrometry. To evaluate the function of postpollination odor changes, we carried out behavioral tests on the pollinator Andrena nigroaenea with pollinated and unpollinated flowers. We identified 27 volatiles in the flower scents. Aldehydes and alkanes were most frequently found. Aldehydes were the most abundant class of compounds (40–50%). When flowers were picked, they emitted significantly lower total amounts of volatiles than unpicked flowers, and their odor bouquets were significantly different. Comparison of scents released by day and at night showed no decrease in scent emission during nighttime, but the odor bouquets were significantly different. Pollinated flowers produced significantly different odor bouquets, and the total amount of scent emitted two to four days after pollination was significantly lower compared with unpollinated flowers. In addition, behavioral tests with A. nigroaenea males showed that flowers were significantly less attractive three days after pollination. This reduced attractiveness is hypothesized to guide pollinators to the unpollinated flowers within an inflorescence, and thus increase the reproductive success of the plant.  相似文献   

6.
Honeybees (Apis mellifera) use odors to identify and discriminate among flowers during foraging. This series of experiments examined the ability of bees to detect and discriminate among the floral odors of different varieties of two species of canola (Brassica rapa and Brassica napus) and also among three varieties of snapdragons (Antirhinnum majus). Individual worker honeybees were trained using a proboscis extension assay. The ability of bees to distinguish a floral odor from an air stimulus during training increased as the number of flowers used during training increased. Bees conditioned to the odor of one variety of flower were asked to discriminate it from the odors of other flowers in two different training assays. Bees were unable to discriminate among flowers at the level of variety in a randomized presentation of a reinforced floral odor and an unreinforced floral odor. In the second type of assay, bees were trained with one floral variety for 40 trials without reinforcement and then tested with the same variety or with other varieties and species. If a bee had been trained with a variety of canola, it was unable to differentiate the odor of one canola flower from the odor of other canola flowers, but it could differentiate canola from the odor of a snapdragon flower. Bees trained with the odor of snapdragon flowers readily differentiated the odor of one variety of a snapdragon from the odor of other varieties of snapdragons and also canola flowers. Our study suggests that both intensity and odor quality affect the ability of honeybees to differentiate among floral perfumes.  相似文献   

7.
Most flowers offer nectar and/or pollen as a reward for pollinators. However, some plants are known to produce mostly fatty oil in the flowers, instead of nectar. This oil is exclusively collected by specialized oil-bees, the pollinators of the oil-plants. Little is known about chemical communication in this pollination system, especially how the bees find their hosts. We collected the floral and vegetative scent emitted by oil-producing Lysimachia punctata by dynamic headspace, and identified the compounds by gas chromatography coupled to mass spectrometry. Thirty-six compounds were detected in the scent samples, several of which were flower-specific. Pentane extracts of flowers and floral oil were tested on Macropis fulvipes in a biotest. Flower and oil extracts attracted the bees, and some of the compounds identified are seldom found in the floral scent of other plants; these may have been responsible for the attraction of the bees.  相似文献   

8.
In the Silene latifoliaHadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-β-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.  相似文献   

9.
Human and insect pollinator perceived floral colors of 81 species of angiosperms (flowering plants) from Trivandrum (Kerala, India) was represented using the CIE 1976 L*a*b* color space and color hexagon, respectively. The floral color difference among human perceived red, yellow, and blue‐hued flowers and that of each flower from its respective pure hue was calculated using the CIE ΔE 2000 formula. Human perceived floral color difference values were consistently higher than 3.5, indicating the uniqueness of floral colors. Flowers perceived red and yellow by humans were dominant and of comparable proportions. Insect pollinators perceive most of the flowers as blue‐green. Quantitative representation of human and pollinator perceived floral colors would be invaluable to understand the information broadcasted by flowers. It can form the basis of flower grading in the floriculture industry and underpin objectivity in evolving the framework for national pollinator strategies.  相似文献   

10.
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.  相似文献   

11.
Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution.  相似文献   

12.
We investigated postpollination changes in fragrance composition and emission rates, as well as pollinator discrimination in hand-pollinated flower heads of two thistle species: Canada thistle (Cirsium arvense) and sandhill thistle (C. repandum). Following pollination, neither species emitted any novel compounds that could function as repellents. Scent emission rates declined in pollinated plants of both species by approximately 89% within 48 hr. This decline was evident in all 13 scent components of C. arvense. Apis mellifera, the dominant pollinator in the study population of C. arvense, was nearly three times more likely to visit an unpollinated rather than a pollinated flower head. A more complex pattern was observed for C. repandum, whose scent comprised 42 compounds. Quantities of aromatic and sesquiterpenoid volatiles declined after pollination, whereas two classes of scent compounds, fatty acid derivatives and monoterperpenoids, continued to be emitted. In C. repandum, discrimination against pollinated flower heads by Papilio palamedes (its primary pollinator) was not as marked. Unpollinated control plants of both species maintained moderate levels of scent production throughout this experiment, demonstrating that senescence and floral advertisement may be delayed until pollination has occurred. We expect postpollination changes in floral scent contribute to communication between plants with generalized pollinator spectra and their floral visitors. This study provides the first field study of such a phenomenon outside of orchids.  相似文献   

13.
Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator—the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.  相似文献   

14.

Flowering plants often use chemical signals to attract their pollinators, and compounds that elicit attraction are known for several groups of pollinators. For other pollinators such as gall midges, however, compounds responsible for their attraction to flowers are largely unknown. Here, we describe the pollination biology of Anthurium acutangulum, a Neotropical aroid species found to be attractive to gall midges. We collected and analyzed its floral scent by dynamic headspace collections and gas chromatography coupled to mass spectrometry, and identified compounds responsible for pollinator attraction. The inflorescences were almost exclusively visited by gall midges (females; Cecidomyiidae: Cecidomyiinae) and released a strong scent reminiscent of freshly cut cucumber, mainly (5S,7S)-trans-conophthorin, (E2,Z6)-2,6-nonadienal, and cis-conophthorin. Behavioral assays with the two most abundant compounds identified (E2,Z6)-2,6-nonadienal as being highly attractive to the female gall midge pollinators, whereas (5S,7S)-trans-conophthorin was not attractive. Overall, we introduce a new specialized gall midge pollination system and identify the chemical mediating communication between the pollinators and their host plants.

  相似文献   

15.
Evolutionary shifts in pollination systems within a plant genus are commonly associated with changes in floral scent, reflecting selection mediated through the sensory systems of various pollinators. The most common cetoniine beetle pollinator of grassland Protea species in South Africa, Atrichelaphinis tigrina, previously has been shown to have a strong preference for the fruity floral scent of these plants over the weak scent of their bird-pollinated congeners. However, it is not known which of the many compounds found in the scent of beetle pollinated Protea species play a role for pollinator attraction. Electroantennograms (EAG) from A. tigrina beetles were recorded in response to 15 compounds emitted by Protea flower heads. EAG responses to all 15 compounds were significantly greater than those to the paraffin solvent in which they were diluted. The greatest responses were observed for aromatics (anisole, methyl benzoate, methyl salicylate, benzaldehyde) followed by the monoterpene β-linalool, which can comprise up to 66 % of fruity Protea scents. Five compounds that elicited EAG responses (benzaldehyde, β-linalool, (E/Z)-linalool oxide (furanoid), methyl benzoate, and methyl salicylate) were tested in commercially available yellow bucket traps in the field to test their attractiveness to beetles. Traps baited with methyl benzoate, β-linalool, (E/Z)-linalool oxide (furanoid), and methyl salicylate caught significantly more insects than did those containing paraffin only. Methyl benzoate also was more specifically attractive to A. tigrina than was (E/Z)-linalool oxide (furanoid) and paraffin baited controls. A second field experiment using a combination of linalool vs. paraffin baited yellow or green traps showed that trap color had a significant effect on the number of trapped beetles. Yellow traps yielded a ten-fold higher number of insect catches than did green traps. However, the combination of yellow color and the scent compound linalool yielded the highest number of catches. This study has shown that the cetoniine beetle A. tigrina can detect a variety of floral compounds and is attracted to compounds comprising a large proportion of the blend that makes up fruity Protea scents, adding support for the hypothesis that change in scent chemistry during the shift from bird to cetoniine beetle pollination in this genus were mediated by beetle sensory preferences.  相似文献   

16.
Many pollinators specialize on a few plants as food sources and rely on flower scents to recognize their hosts. However, the specific compounds mediating this recognition are mostly unknown. We investigated the chemical basis of host location/recognition in the Campanula-specialist bee Chelostoma rapunculi using chemical, electrophysiological, and behavioral approaches. Our findings show that Ca. trachelium flowers emit a weak scent consisting of both widespread and rare (i.e., spiroacetals) volatiles. In electroantennographic analyses, the antennae of bees responded to aliphatics, terpenes, aromatics, and spiroacetals; however, the bioassays revealed a more complex response picture. Spiroacetals attracted host-naive bees, whereas spiroacetals together with aliphatics and terpenes were used for host finding by host-experienced bees. On the intrafloral level, different flower parts of Ca. trachelium showed differences in the absolute and relative amounts of scent, including spiroacetals. Scent from pollen-presenting flower parts elicited more feeding responses in host-naive bees as compared to a scentless control, whereas host-experienced bees responded more to the nectar-presenting parts. Our study demonstrates the occurrence of learning (i.e., change in the bee’s innate chemical search-image) after bees gain foraging experience on host flowers. We conclude that highly specific floral volatiles play a key role in host-flower recognition by this pollen-specialist bee, and discuss our findings into the broader context of host-recognition in oligolectic bees.  相似文献   

17.
18.
In order to analyze intra and interspecific olfactory discrimination, behavioral responses (sniffing and marking) towards various odors were observed in pine martens (Manes martes). Two adult males and two adult females were tested for intraspecific discrimination of abdominal gland odors and urine. Both sexes sniffed and marked objects carrying their own scent less than unscented objects. There were no differences in sniffing or marking objects impregnated with odors from known and unknown conspecifics of the opposite sex or objects carrying the odor of an unknown male or female. A second experiment with two adult females gave no evidence for interspecific discrimination: no differences emerged when comparing reactions towards marks of pine martens, stone martens (a closely related species), or genets. The most obvious result of this study is the reduced response of pine martens towards their own mark. It is suggested that scent marking in martens may reflect autocommunication, the primary effect being to familiarize an animal with its environment.  相似文献   

19.
Trees of the genus Glochidion (Phyllanthaceae) are pollinated by females of Epicephala moths (Gracillariidae) whose larvae consume the seeds of the flowers that they pollinate. Each Epicephala moth species is specific locally to a single host species, although two to four Glochidion hosts often cooccur. To investigate the role of olfactory signals in maintaining the plant−moth specificity, we analyzed floral scent composition of five Glochidion species by using gas chromatography–mass spectrometry (GC-MS) and conducted Y-tube olfactometer bioassays with Epicephala moths and their host flowers. The GC-MS analysis showed that the floral scents of the five Glochidion species are dominated by (R)-(−)- and (S)-(+)-linalool, and (E)- and (Z)-β-ocimene, and that each species produces 6–20 compounds. Transformation of scent profiles by using chord-normalized expected species shared distances and analysis of the data with nonmetric multidimensional scaling showed that floral volatiles of cooccurring Glochidion species can be distinguished by relative chemical composition, especially that of minor compounds. The bioassay with pollinators of Glochidion lanceolatum and Glochidion ruburm further indicated that Epicephala moths are capable of discriminating their hosts by using floral odor. The results suggest that the floral scent of Glochidion is one of the important key signals that mediate the encounters of the species-specific partners in the GlochidionEpicephala mutualism.  相似文献   

20.
Seven flower colors perceived by five color experts using visual color measurement under 2800 K warm white fluorescent lamps, 3500 K plant growth lamps, and 6500 K light‐emitting diodes (LEDs) were compared with those under 6500 K fluorescent lamps, which represented illuminants in florist shops. Fluorescent lamps (6500 K, 1000 lx) were found to be effective for displaying flower colors and were used as the standard condition. The colors of flowers generally shifted in the same direction as those of the illuminants in CIELAB space. The color differences were highest under the 3500 K fluorescent lamp at both 500 and 2000 lx. At 500 lx, the ΔE values under the 6500 K LED were higher than those under the 2800 K lamp. The C* and ΔE values revealed that the 2800 K lamp was unsatisfactory for purple‐blue and purple flowers and was more suitable for floral displays at lower illuminance. Under the 3500 K lamp, the highest color distortion occurred in cool‐colored flowers, but C* increased for purple‐blue and purple flowers. The 6500 K LED tended to decrease C* for warm‐colored flowers under both illuminances, but it was effective for displaying purple‐blue and purple flowers with increased C*. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 28–36, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号