首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
相变蓄热水箱可有效调节集热器和负载端之间供求不匹配的矛盾,设计了环形布水器进水结构和蓄热水箱,并搭建相变蓄热水箱性能测试平台,对比直进型蓄热水箱和环形布水器蓄热水箱的温度分层,探究孔隙率、进水流速和变温进水等变量下相变蓄热水箱的热分层和相变球的释热性能。实验研究表明:环形布水器能有效抑制进水水流对温度场的扰动,保持良好的温度分层,使相变球逐层放热,增大相变球与传热流体(HTF)的温差,提高释热效率,保证高温水能够源源不断地提供给用户端;孔隙率越小分层效果越好;流速越大分层效果越差,但是释热效率有所提高;变温进水比恒温进水,释热时间延长约40%。  相似文献   

2.
该文设计了一个由顶部稳流器、底部稳流器、2个侧面稳流器以及上部挡水板和下部挡水板组成的蓄热水箱。为了研究蓄热水箱运行时的温度分层效果,用Gambit建立蓄热水箱模型,并且用Fluent分别模拟热泵机组蓄热水箱供暖模式和热泵机组蓄热水箱既蓄热又供暖模式。模拟结果表明,蓄热水箱供热模式可满足持续供热时间为360 min,并且出水口温度始终高于313 K;而对比模型在相同工况下仅能提供60 min的热水。在温度分层方面,运行480 min后,蓄热水箱上部与中部的最终平均温差为6.8 K,蓄热水箱中部与下部的平均温差为4.6 K。  相似文献   

3.
利用相变材料蓄热是提高太阳能系统效率的重要途径之一。为对比分析含相变材料蓄热水箱的性能,选用三水合乙酸钠,搭建了一套蓄热水箱实验系统,在初始水温为80℃、进水温度为20℃的工况下,对比分析不同进口流量下(2、6和10 L/min)相变蓄热水箱的热特性。实验结果表明:相变蓄热水箱的蓄热量较普通水箱增加了1.4%;随着流量的增加,水箱的混合数先减小后增大,火用效率逐渐降低,相变蓄热水箱的填充效率先增大后减小,且在6 L/min时达到最大值0.905。  相似文献   

4.
热水蓄热技术是解决我国热电耦合问题,提高热电系统和电网消纳可再生能源能力的重要手段。通过数值模拟方法研究水箱内置隔板的直径、高度和厚度对热分层特性的影响,基于理查森数、分层数和火用效率等性能指标,得到不同隔板设计尺寸对温度分层的影响规律,并提出隔板的结构优化设计方法。结果表明:内置隔板对水箱内冷热水掺混程度的抑制作用和对水箱内温度分层的改善效果与流体的流动参数及温度密切相关,当隔板高度为19.275 m,直径为10 m,厚度为0.3 m时具有最佳的热分层特性。  相似文献   

5.
以所设计的新型蓄热太阳能-地源热泵耦合系统为研究对象进行了现场模拟实验,太阳能集热器具有季节性蓄热功能,蓄热水箱可在冬季高品质供暖,夏季实现高效制冷。通过实验研究和经济分析结果显示,系统中地埋管换热器和蓄热水箱间歇运行,有利于地下温度场的恢复,延长地埋管的使用寿命,提高地源热泵工作效率及使用年限,具有明显的经济效益。  相似文献   

6.
蓄热水箱能够存储和调配能量。将蓄热水箱应用到太阳能热水系统中,可以弥补太阳能的不稳定性和不连续性,有效地提高太阳能热水系统的热利用率。文章基于小型太阳能热水系统,建立蓄热水箱物理模型,应用Fluent软件模拟分析了各个工况下蓄热水箱的温度分层情况,从而寻求较优的温度分层。分析结果表明:当热水入口质量流量小于2.8 kg/s时,蓄热水箱的温度分层比较明显;当热水入口质量流量大于2.8 kg/s时,随着热水入口质量流量逐渐增大,蓄热水箱温度分层越来越不明显;热水入口温度与水箱初始温度对于蓄热水箱温度分层影响不大;当热水入口质量流量为2.8 kg/s时,存在最佳热水入口直径(9 mm),此时蓄热水箱冷、热水不发生混合,蓄热水箱的热利用率较高。  相似文献   

7.
采用蓄热水箱的多节点模型,对典型太阳能供热系统进行全年逐时模拟计算.计算数据表明,相比于完全混合的蓄热水箱,水箱温度分层可较大幅度提高太阳能集热器的平均效率和太阳能保证率.同时还分析了不同集热器类型、供水温度、供回水温差等条件下.蓄热水箱温度分层对太阳供热系统性能提高程度的影响.  相似文献   

8.
太阳能热水系统中蓄热水箱热分层的研究,已经成为目前提高太阳能集热器效率和太阳能保证效率的重要方向,良好的热分层一方面可以降低进入集热器的温度,减少传热损失,提高集热器效率;另一方面可以提高水箱内可被利用的高温水量,减少辅助加热量,从而提高整个太阳能热水系统的性能。综合国内外文献,总结了蓄热水箱热分层现象,热分层的数学模型以及影响因素,并展望了热分层蓄热水箱的研究趋势。  相似文献   

9.
蓄热技术是太阳能光热利用的重要组成部分,而以水作为蓄热介质的中低温蓄热技术是太阳能热利用系统中的关键技术之一。本研究设计了一种新型进口均流器,并搭建了一套储热水箱热力学特性测试实验台。在初始水温50℃、进水温度20℃的工况下,分析对比了不同流量下储热水箱的热力学特性。结果显示:均流器提高了分层蓄热水箱的分层效果以及水箱的效率。在同一进口流量下,水箱的热分层效率先增大后减小。而随着无量纲时间的增加,水箱的火用效率逐步降低,此外,水箱的火用效率还随着流量的增加,先增大后减小。当无量纲时间为0.6时,进口流量分别为1.14、3.16和6.11 L/min时,水箱的火用效率分别为85.9%、90.7%和83.9%。  相似文献   

10.
罗艳  汤金华 《节能》2008,27(12)
利用多节点模型描述蓄热水箱温度分层,将这种模型应用到太阳能生活供热系统中,研究温度分层对太阳能供热系统性能的影响。研究表明:水箱温度分层显著提高集热器效率,对平板集热器的影响大于真空管集热器。用水模式、供水温度、供回水温差,对水箱温度分层都有影响。  相似文献   

11.
A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices.  相似文献   

12.
Six different experimental thermal stratification evaluation parameters during charging for an oil/pebble-bed TES system are presented. The six parameters are the temperature distribution along the height of the storage tank at different time intervals, the charging energy efficiency, the charging exergy efficiency, the stratification number, the Reynolds number and the Richardson number. These parameters are evaluated under six different experimental charging conditions. Temperature distribution along the height of the storage tank at different time intervals and the stratification number are parameters found to describe thermal stratification quantitatively adequately. On the other-hand, the charging exergy efficiency and the Reynolds number give important information about describing thermal stratification qualitatively and should be used with care. The charging energy efficiency and the Richardson number have no clear relationship with thermal stratification.  相似文献   

13.
To sufficiently store and use high-quality heat energy, thermal stratification is gradually applied in many kinds of energy storage fields such as solar thermal utilization system. Because of the unsteady characteristics of solar radiation, thermal storage becomes very essential in long-term operation of heating load. The wide application of thermal stratification lies in the minimization of the mixing effect by use of the thermal stratification, which is caused by the thermal buoyancy because of the difference of temperature between cold and hot water. According to the review, the conception of thermal stratification allows a wide variety of different design embodiments, which essentially extends the fields of practical application of these devices. In this paper a survey of the various types of thermal stratification tanks and research methods is presented, and reasons of energy storage with efficiency problems related to the applications are introduced and benefits offered by thermal stratification are outlined. The structure designs based on theoretical prediction of thermal-stratified water tank performed at many organizations are introduced and are compared with their experimental results. Finally, the development of the tank with thermal stratification in the future application is predicted.  相似文献   

14.
In this paper, exergy modeling is used to assess the exergetic performance of a novel trigeneration system using parabolic trough solar collectors (PTSC) and an organic Rankine cycle (ORC). Four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration. In this trigeneration system a single-effect absorption chiller is utilized to provide the necessary cooling energy and a heat exchanger is utilized to provide the necessary heating energy. The trigeneration system considered is examined using three modes of operation. They are: solar mode during the low-solar radiation time of the day, solar and storage mode during the high-solar radiation time of the day, and storage mode during night time. The storage mode is operated through the heat collected in a thermal storage tank during the solar and storage mode. The exergy efficiencies and exergy destruction rates are examined under the variation of the ORC evaporator pinch point temperature, ORC pump inlet temperature, and turbine inlet pressure. This study reveals that the maximum electrical-exergy efficiency for the solar mode is 7%, for the solar and storage mode is 3.5%, and for the storage mode is 3%. Alternatively, when trigeneration is used, the exergy efficiency increases noticeably. The maximum trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode is 8%, and for the storage mode is 7%. Moreover, this study shows that the main sources of exergy destruction rate are the solar collectors and ORC evaporators. Therefore, careful selection and design of these two components are essential to reduce the exergy destructed by them and, thus, increase the exergy efficiencies of the system.  相似文献   

15.
Thermal stratification in a mantled hot water storage tank is analysed numerically for different water inlet velocities. The aim is to obtain higher thermal stratification and supply hot water for usage as long as possible. Twelve different water inlet velocities to the hot water storage tank are considered. The numerical method is validated by comparing its results against experimental and numerical results from the literature. It turned out that the results obtained from the numerical analysis have shown very good agreements with the results from previous works. As a result, the water temperature in the tank increases with the increase of the water inlet velocities to the mantle but this increment is not proportional. After a period of operation of 7.2 h, which corresponds to the average sunshine duration in Turkey, temperature increments of 6.5 and 35 K have been estimated for the hot water inlet velocities of 0.01 and 0.3 m s?1, respectively, at a radial distance of 0.1 m and a height of 1 m inside the storage tank. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Performance of an improved design for storage-type domestic electrical water-heaters (EWHs) was experimentally investigated for energy conservation. The results were compared with those of conventional design EWHs having the same tank size and power rating. Data were obtained for two tanks with aspect ratios of 1 and 2, two draw-off rates of 5 and 10 l/min, and using three heating elements of different heights. It is found that improved design EWHs provide more hot water at almost constant temperature in the first mean residence time, which is of prime concern for the user. Thus, they exhibit higher discharging efficiencies due to better thermal stratification inside the heater storage tank. Also, thermal performance is enhanced with increasing tank aspect ratio and decreasing draw rate. These characteristics have a direct impact on energy consumption and result in lower electricity bills. The design improvements are simple to adapt as they only require minor modifications to be made to existing EWH models.  相似文献   

17.
In this brief note, we have experimentally measured the temperature stratification in a solar hot water storage tank resulting from a simulated solar heating load. Various modifications using a double chimney device that acts as a thermal diode were examined with the intent of maximizing temperature stratification. The greatest stratification was seen with a unique thermal diode arrangement named the express-elevator design, so-called for the direct hot water path from the bottom third of the tank to the top third.  相似文献   

18.
Two and three dimensional direct numerical simulations (DNS) of an autoignitive premixture of air and ethanol in Homogeneous Charge Compression Ignition (HCCI) mode have been conducted. A special feature of these simulations is the use of compression heating through mass source/sink terms to emulate the compression and expansion due to piston motion. Furthermore, combustion phasing is adjusted such that peak heat release occurs after Top Dead Center (TDC) during the expansion stroke, as in a real engine. Zero dimensional simulations were first conducted to identify important parameters for the higher dimensional simulations. They showed that for ethanol, temperature and dilution are the parameters the problem is most sensitive to. One set of two dimensional simulations were conducted with a uniform mixture composition and different levels of temperature stratification, both with and without compression heating. Another set of simulations varied the mixture stratification with constant temperature stratification. Both sets showed considerable differences in ignition delay, heat release and peak temperature and peak pressure. Compression heating was also found to have a significant effect on the heat release profile. A three dimensional simulation was conducted for Spark-Assisted HCCI (SACI). It was initiated with a small spark kernel, which evolved into a premixed flame. The entire mixture eventually underwent autoignition. Distance function based analysis showed a strongly attenuating flame. Analysis of scalar mixing frequencies shows that differential diffusion and reaction induced mixing play an important role in predicting the mixing of reactive scalars. This has significant implications for mixing models for reactive flows. Chemical explosive mode analysis (CEMA) was applied to the 3D simulation and showed promise in identifying the transition from flame propagation to autoignition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号