首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Biomass & bioenergy》2006,30(10):892-896
Anaerobic treatment of solid wastes from potato processing was studied in completely stirred tank reactors (CSTR) at 55 °C. Special attention was paid to the effect of increased organic loading rate (OLR) on the biogas yield in long-term experiments. Both biogas yield and CH4 in the biogas decreased with the increase in OLR. For OLR in the range of 0.8 gl−1 d−1–3.4 gl−1 d−1, biogas yield and CH4 obtained were 0.85 l g−1–0.65 l g−1 and 58%–50%, respectively. Biogas yield y as a function of maximum biogas yield ym, reaction rate constant k and HRT are described on the basis of a mass balance in a CSTR and a first order kinetic. The value of ym can be obtained from curve fitting or a simple batch test and k results from plotting y/(ymy) against 1/OLR from long-term experiments. In the present study values for ym and k were obtained as 0.88 l g−1 and 0.089 d−1, respectively. The simple model equations can apply for dimensioning completely stirred tank reactors (CSTR) digesting organic wastes from food processing industries, animal waste slurries or biogas crops.  相似文献   

2.
Enhanced technologies from oil recovery to unconventional fuels - oil shale, oil sands and extra-heavy oil – have in common complex chemical reactions processes. This paper is about the formulation and optimization of the chemical mechanism especially in oil shale and semi-coke combustion. The Levenberg–Marquardt algorithm was used to minimize the error between estimated values and the thermogravimetric data for combustion mechanisms of 4-steps and 3-steps proposed for the oil shale and its semi-coke respectively. The kinetic parameters such as reaction order, pre-exponential factor, activation energy and stoichiometric coefficients that affect drying, pyrolysis, oxidation and decarbonation reactions were estimated with success. The values of activation energies were 54–67 kJ mol?1 for oil shale drying, 62–65 kJ mol?1 for pyrolysis reaction, up to 100 kJ mol?1 for Fixed Carbon (FC) oxidation reaction, and 162–418 kJ mol?1 for decarbonation reaction. Regarding to the semi-coke combustion, the activation energies were 33 kJ mol?1 for drying reaction, 211 kJ mol?1 for oxidation reaction and 291 kJ mol?1 for decarbonation reaction. The chemical reactions suggest reaction order superior to one, except to the decarbonation reaction at 3 K min?1. Considering the estimated parameters, as well as a heating rate at 3 K min?1, an oil shale containing about 20 wt.% of organic matter and 34.6 wt.% of CaCO3, the species mass fractions formed during combustion process were 3.4 wt.% of FC, 10.6 wt.% of Oil, 3.3 wt.% of HC and 1.8 wt.% of CO. The fraction of CO2 formed accounts a total of 21.6 wt.%. For a semi-coke containing 3.4 wt.% of FC and 40.6 wt.% of CaCO3, its combustion formed 2.1 wt.% of CO. The CO2 fraction from oxidation and decarbonation reactions accounts 10.2 wt.%, considering that the stoichiometric mass coefficient γ = 0.75 in decarbonation reaction.  相似文献   

3.
High-temperature 3-pentanone pyrolysis and oxidation studies were performed behind reflected shock waves using laser-based species time-history measurements (3-pentanone, CH3, CO, C2H4, OH and H2O) and ignition delay time measurements. The overall 3-pentanone decomposition rate coefficient was inferred from the measured 3-pentanone and CH3 time-histories during pyrolysis at temperatures of 1070–1530 K and a pressure of 1.6 atm., and yielded a mathematical expression for ktot = 4.383 × 1049 T?10 exp(?44,780/T) s?1 with an uncertainty of ±35% over 1070–1330 K. The measured species time-histories and ignition delay times were also compared to simulations from a detailed kinetic mechanism of Serinyel et al. (2010) [14]. The measured ktot was approximately 3.5 times faster than the value used by Serinyel et al. Additionally, the absence of a methyl ketene decomposition reaction was identified as the cause of a deficiency in the O-atom balance of the measured 3-pentanone and CO time-histories. Using the revised overall 3-pentanone decomposition rate coefficient and an additional methyl ketene decomposition pathway, the modified mechanism was able to successfully simulate all six species time-histories, and showed a significant improvement in the predictions of ignition delay times. Finally, a comparison of ignition delay times and OH species time-histories during 3-pentanone, 2-pentanone and acetone oxidation found that 3-pentanone was the most reactive of the three ketones.  相似文献   

4.
The present study was aimed to treat the dairy wastewater by using anaerobic and solar photocatalytic oxidation methods. The anaerobic treatment was carried out in a laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASB) with a working volume of 5.9 L. It was operated at organic loading rate (OLR) varying from 8 to 20 kg COD/m3 day for a period of 110 days. The maximum loading rate of the anaerobic reactor was found to be 19.2 kg COD/m3 day and the corresponding chemical oxygen demand (COD) removal at this OLR was 84%. The anaerobically treated wastewater at an OLR of 19.2 kg COD/m3 day was subjected to secondary solar photocatalytic oxidation treatment. The optimum pH and catalyst loading for the solar photochemical oxidation was found to be 5 and 300 mg/L, respectively. The secondary solar photocatalytic oxidation using TiO2 removed 62% of the COD from primary anaerobic treatment. Integration of anaerobic and solar photocatalytic treatment resulted in 95% removal of COD from the dairy wastewater. The findings suggest that anaerobic treatment followed by solar photo catalytic oxidation would be a promising alternative for the treatment of dairy wastewater.  相似文献   

5.
This study experimentally examines the influence of two-phase flow on the fluid flow in membraneless microfluidic fuel cells. The gas production rate from such fuel cell is firstly estimated via corresponding electrochemical equations and stoichiometry from the published measured current–voltage curves in the literature to identify the existence of gas bubble. It is observed that O2 bubble is likely to be generated in Hasegawa’s experiment when the current density exceeds 30 mA cm?2 and 3 mA cm?2 for volumetric flow rates of 100 μL min?1 and 10 μL min?1, respectively. Besides, CO2 bubble is also likely to be presented in the Jayashree’s experiment at a current density above 110 mA cm?2 at their operating volumetric liquid flow rate, 0.3 mL min?1. Secondly, a 1000-μm-width and 50-μm-depth platinum-deposited microfluidic reactor is fabricated and tested to estimate the gas bubble effect on the mixing in the similar microchannel at different volumetric flow rates. Analysis of the mixing along with the flow visualization confirm that the membraneless fuel cell should be free from any bubble, since the mixing index of the two inlet streams with bubble generation is almost five times higher than that without any bubble at the downstream.  相似文献   

6.
Dynamics of laminar triple flame investigated numerically for the different mixture degrees. One-step methane–air chemistry adequate to reach and lean mixture combustion was accepted. Velocity of triple flame is determined as a function of methane concentration logarithm gradients μ = d(ln Y1)/dx (characterizing mixing degree). It is found that maximum velocity of the triple flames correspond to the value of the methane concentration logarithm gradients μ  1000 m?1 for plain and μ  2000 m?1 for axis-symmetrical channels. The maximum velocity of triple flame in plain and axis-symmetrical channels in the case of non-gradient incoming gas flow is about twice bigger than normal laminar flame velocity Sf  2.1Sl.  相似文献   

7.
The current study centers around a numerical investigation of natural convection heat transfer within a two-dimensional, horizontal annulus that is partially filled with a fluid-saturated porous medium. In addition, the porous sleeve is considered to be press fitted to the inner surface of the outer cylinder. Both cylinders are maintained at constant and uniform temperatures with the inner cylinder being subjected to a relatively higher temperature than the outer one. Moreover, the Forchheimer and Brinkman effects are taken into consideration when simulating the fluid motion inside the porous sleeve. Furthermore, the local thermal equilibrium condition is assumed to be applicable for the current investigation. The working fluid is air while copper is used to represent the solid phase. The porosity is considered to be uniform and constant with ε = 0.9. The main objective of this study is to examine the effect of the porous sleeve on the buoyancy induced flow motion under steady-state condition. Such an effect is studied using the following dimensionless parameters: Pr = 0.05–50, Ra = 102–106 and Da = 10?4–10?6. Also, the study highlights the effect of the dimensionless porous sleeve thickness (b) and thermal conductivity ratio (ks/kf) in the range between 1.1–1.9 and 1–150, respectively.  相似文献   

8.
In-situ ultra-thin porous poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF–HFP) membranes were prepared by a phase inversion method on TiO2 electrodes coated with Ru N-719 dye. These membranes were then soaked in the organic liquid electrolyte to form the in-situ ultra-thin porous P(VDF–HFP) membrane electrolytes. Dye-sensitized solar cell (DSC) using the membrane electrolyte exhibited an open-circuit voltage (Voc) of 0.751 V, a short-circuit current (Jsc) of 16.260 mA cm?2 and a fill factor (FF) of 0.684 under an incident light intensity of 1000 W m?2 yielding an energy conversion efficiency (η) of 8.35%. The Voc, FF and η of the solar cell using the membrane electrolyte increased by about 5.8%, 2.2% and 5.7%, respectively, when compared with the corresponding values of a cell using liquid electrolyte. However, the Jsc decreased by about 2.1%.  相似文献   

9.
A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g?1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l?1 together with thiamine at a level of 0.2 g l?1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm3 min?1 m3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.  相似文献   

10.
Mathematical simulation of unsteady natural convection modes in a square cavity filled with a porous medium having finite thickness heat-conducting walls with local heat source in conditions of heterogeneous heat exchange with an environment at one of the external boundaries has been carried out. Numerical analysis was based on Darcy–Forchheimer model in dimensionless variables such as a stream function, a vorticity vector and a temperature. The special attention was given to analysis of Rayleigh number effect Ra = 104, 105, 106, of Darcy number effect Da = 10?5, 10?4, 10?3, ∞, of the transient factor effect 0 < τ < 1000 and of the heat conductivity ratio k2,1 = 3.7 × 10?2, 5.7 × 10?4, 6.8 × 10?5 on the velocity and temperature fields. The influence scales of the defining parameters on the average Nusselt number have been detected.  相似文献   

11.
In order to investigate reaction heat of agro-stalks smoldering, wheat straw, corn stalk, cotton stalk, millet straw, sorghum stalk and sweet potato rattan powder were smoldered and pyrolyzed in a simultaneous thermal analyzer (STA). The samples were placed in a platinum crucible (?5 mm×5 mm) with a lid (with a ?1 mm hole) on a high-accuracy differential scanning calorimetry–heat capacity (DSC-cp) holder in the furnace of an STA and heated from 303 to 1073 K at a heating rate of 10 K min?1. Sweeping gas with a flow rate of 25 ml min?1 was air and nitrogen during smoldering and pyrolysis, respectively. Results showed that the heat emission characteristic of the smoldering process differed remarkably from the pyrolysis process. Based on the analysis of the DSC curves, oxidative polymer degradation heat and char oxidation heat were obtained from experimental data. It showed that the oxidative polymer degradation heat of the agro-stalks is more than 6.92 MJ kg?1 consumed matter, higher than that of cellulose paper. And char oxidation heat is around 23 MJ kg?1 consumed matter, similar to that of cellulose paper, but higher than that of cigarette. Total net heat emission of smoldering in STA was also obtained. These data can be used as reference data in analyzing smoldering of agro-stalks under similar conditions.  相似文献   

12.
The synthesis of spinel-type lithium titanate, Li4Ti5O12, a promising anode material of secondary lithium-ion battery, from “inert” rutile TiO2, is investigated. On the purpose of increasing the reactivity of rutile TiO2, it is treated by concentrated HNO3. By applying such activated rutile TiO2 as the titanium source in combination with the cellulose-assisted combustion synthesis, phase-pure Li4Ti5O12 is successfully synthesized at 800 °C, at least 150 °C lower than that based on solid-state reaction. The resulted oxide shows a reversible discharge capacity of ~175 mAh g?1 at 1 C rate, near the theoretical value. The resulted oxide also shows promising high rate performance with a discharge capacity of ~100 mAh g?1 at 10 C rate and high cycling stability.  相似文献   

13.
A series of photocatalysts, BiTa1?xCuxO4 (x = 0.00–0.04), were synthesized by the conventional solid-state reaction method and their electronic structures and photocatalytic activities were investigated. The electron microscope observations revealed that the particle sizes of BiTaO4:Cu crystals were smaller and the surface with many characteristic steps was more obvious than that of the nondoped BiTaO4, which lead to the increase of photocatalytic activity of water splitting. The UV–vis spectra indicate that the Cu2+ ions doping not only enhanced the photocatalytic activity under ultraviolet–visible (λ > 300 nm) light irradiation but also induced the visible light (λ > 400 nm) response. The photocatalyst doped with 2 mol% Cu2+ and loaded with 0.3 wt% RuO2 co-catalyst was found to have the highest activity. New band gap in the visible light range is obtained by copper-doped BiTaO4, which is attributed to the transition from the donor level resulting from the Cu impurity to the conduction band of BiTaO4 doped with copper on the basis of the result of DFT calculation.  相似文献   

14.
Anaerobic digestion (AD) is a promising option for the environmentally friendly recycling of agricultural by-products. However, overloading of the digester with sugar, starch or protein might cause inhibition of the anaerobic processes. The aim of the present project was to investigate the AD of sugar beet, starch potato by-products and effect of pre-treatment by steam on methane yield of potatoes pulp. The investigated by-products have been: sugar beet pulp silage (SBP), sugar beet tail silage (SBT), potato pulp (PP), potato peel pulp (PPP) and potato fruit water (PFW). All by-products were digested in 1 l eudiometer-batch digesters at 37.5 °C during 28–38 days. The specific methane yields of SBP and SBT were 430 and 481 lN kg?1 volatile solids (VS), respectively. The specific methane yields of PP, PPP and PFW were 332, 377 and 323 lN (kg VS)?1. A steam pre-treatment significantly increased the specific methane yield of PP up to 373 lN (kg VS)?1.  相似文献   

15.
This study was designed to consider all nitrogen fertilizer-related effects on crop production and emission of greenhouse gases on loamy sandy soils in Germany over a period of nine years (1999–2007). In order to set up a CO2 balance for the production of energy crops, different nitrogen pathways were investigated, such as direct N2O emissions from the soil and indirect emissions related to NO3 leaching and fertilizer production. Fluxes of N2O were measured in an experimental field using closed chambers. Poplar (Populus maximowiczii × P. nigra) and rye (Secale cereale L.) as one perennial and one annual crop were fertilized at rates of 0 kg N ha?1 yr?1, 75 kg N ha?1 yr?1 and 150 kg N ha?1 yr?1. The mean N2O emissions from the soil ranged between 0.5 kg N ha?1 yr?1 and 2.5 kg N ha?1 yr?1 depending on fertilization rate, crop variety and year. The CO2 fixed in the biomass of energy crops is reduced by up to 16% if direct N2O emissions from soil and indirect N2O emissions from NO3 leaching and fertilizer production are included. Taking into account the main greenhouse gas emissions, which derive from the production and the use of N fertilizer, the growth of poplar and rye may replace the global warming potential of fossil fuels by up to 17.7 t CO2 ha?1 yr?1 and 12.1 t CO2 ha?1 yr?1, respectively.  相似文献   

16.
Anatase TiO2 nanoparticles dressed with gold nanoparticles were synthesized by hydrothermal process by using mixed precursor and controlled conditions. Diffused Reflectance Spectra (DRS) reveal that in addition to the expected TiO2 interband absorption below 360 nm gold surface plasmon feature occurs near 564 nm. It is shown that the dye sensitized solar cells made using TiO2–Au plasmonic nanocomposite yield superior performance with conversion efficiency (CE) of ~6% (no light harvesting), current density (JSC) of ~13.2 mA/cm2, open circuit voltage (Voc) of ~0.74 V and fill factor (FF) 0.61; considerably better than that with only TiO2 nanoparticles (CE  5%, JSC  12.6 mA/cm2, Voc  0.70 V, FF  0.56).  相似文献   

17.
Turbulent natural convection in a rectangular enclosure having finite thickness heat-conducting walls at local heating at the bottom of the cavity provided that convective-radiative heat exchange with an environment on one of the external borders has been numerically studied. Mathematical simulation has been carried out in terms of the dimensionless Reynolds averaged Navier–Stokes (RANS) equations in stream function–vorticity formulations. The formulation comprises the standard two equation k–ε turbulence model with wall functions, along with the Boussinesq approximation, for the flow and heat transfer. The special attention was paid to the effects of the Grashof number 108 ? Gr < 1010, the transient factor 0 < τ < 1000 and the thermal conductivity ratio k2,1 = 5.7 × 10?4, 6.8 × 10?5 both on local and on integral problem parameters. Detailed results including stream lines, temperature profiles and correlation for the average Nusselt number in terms of Grashof number have been obtained.  相似文献   

18.
The structure, the thermal expansion coefficient, electrical conductivities of Ce0.8Gd0.2?xMxO2?δ (for M: Bi, x = 0–0.1, and for M: Sm, La, and Nd, x = 0.02) solid solutions, prepared for the first time hydrothermally, are investigated. The uniformly small particle size (28–59 nm) of the materials allows sintering of the samples into highly dense ceramic pellets at 1300–1400 °C. The maximum conductivity, σ700 °C around 4.46 × 10?2 S cm?1 with Ea = 0.52 eV, is found at x = 0.1 for Bi-co-doping. Among various metal-co-dopings, for x = 0.02, the maximum conductivity, σ700 °C around 2.88 × 10?2 S cm?1 with Ea = 0.67 eV, is found for Sm-co-doping. The electrolytic domain boundary (EDB) of Ce0.8Gd0.1Bi0.1O2?δ is found to be 1.2 × 10?19 atm, which is relatively lower than that of the singly doped samples. The thermal expansion coefficients, determined from high-temperature X-ray data are 11.6 × 10?6 K?1 for the CeO2, 12.1 × 10?6 K?1 for Ce0.8Gd0.2O2?δ, and increase with co-doping to 14.2 × 10?6 K?1 for Ce0.8Gd0.18Bi0.02O2?δ. The maximum power densities for the single cell based on the codoped samples are higher than that of the singly doped sample. These results suggest that co-doping can further improve the electrical performance of ceria-based electrolytes.  相似文献   

19.
《Biomass & bioenergy》2007,31(8):593-598
This work is focused on the influence of dilution rate (0.08⩽D⩽0.32 d−1) on the kinetics of continuous cultivation of Spirulina platensis at two different concentrations of ammonium chloride (N0=1.0 and 10 mM) as nitrogen source. Cell productivity increased in both series of runs up to D≅0.12–0.16 d−1, and then decreased. While at N0=1.0 mM biomass washing was certainly the cause of progressive cell concentration decrease, a combination of this phenomenon with the toxic effect of excess ammonia was responsible, at N0=10 mM and D⩾0.20 d−1, for quick stop of cell growth just beyond the achievement of maximum cell productivity (92.4 mg l−1 d−1). Similar profile was observed for protein productivity, that achieved a maximum value of 67.0 mg l−1 d−1, because of the very high protein content (72.5%) of biomass produced under these conditions. The yield of nitrogen-to-biomass was much higher at the lower N0, because of the low protein content, and reached a maximum value of 9.7 g g−1 at D=0.08–0.12 d−1. The yield of nitrogen-to-protein showed less marked difference, being most of the nitrogen present in the cell as proteins or free amino-acids.  相似文献   

20.
Chars of Sugar cane bagasse (1 & 2), Cotton stalk and low rank Pakistani coal have been studied by TGA under low oxidative environments with O2 concentrations of 1% and 3%. The maximum reactivity of the chars was found to be greater by a factor of 2 under 3% oxygen compared to 1% O2 conditions. Overall conversion levels at 3% O2 for Sugar cane bagasse-2 increased from 63% to 100%, Sugar cane bagasse-1; 54% to 97%, Cotton stalk; 45% to 100% and Pakistani coal; 63% to 90% in comparison to 1% O2. The maximum average rate of weight loss was found in Region III compared to Region I and II supported by CO/CO2 FTIR Chemigram analysis. On the other hand, % conversion was maximum in Region II under 1% and 3% O2 concentration. Overall average rates of weight losses were dependant on O2 concentration and temperature ranges, however for all the regions % conversion and average weight loss were twice in 3% compared to 1% O2 concentration. Biomass chars were found to be more reactive than the coal studied here during each region of the oxidation process. Evaluated apparent energy of activations for biomass chars was found within range of 41.2–105.8 kJ mole?1 under 1%, 46.9–125.6 kJ mole?1 under 3% compared to coal; 70.3–183.9 kJ mole?1 under 1% and 83.1–167.4 kJ mole?1 in 3% O2 concentration for order of reaction (n) varying between 0.5  n  2. From the tests carried under O2 levels of 1% and 3%, it is possible to give the following sequence to the apparent activation energies under any of the fixed value of n, obtained for the biomasses and coal; Pakistani coal > Cotton stalk > Sugar cane bagasse-2 > Sugar cane bagasse-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号