首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 127 毫秒
1.
临近地铁隧道的软土深基坑开挖时,若不能严格控制基坑施工效应,既有盾构隧道易出现损坏.在杭州市萧山区彩虹大道(工人路-市心路)B标段深基坑工程开挖过程中,对基坑下穿地铁隧道受影响范围内的隧道位移、收敛等进行监测,同时开展基坑地下连续墙与土体深层水平位移、地下水位、支撑轴力、地表和周边建筑物沉降、基坑围护墙顶与立柱沉降的监测工作.数据分析结果表明:基坑开挖对下穿隧道的影响以竖向位移为主,对水平位移和收敛变形影响较小;地下连续墙深层墙体水平位移与深层土体水平位移有明显的相关性,可用墙体水平位移代替土体水平位移;基坑地下水位的变化趋势与周边建筑物沉降变化趋势相同,开挖期间需密切关注地下水位的变化;基坑隆起是导致支撑轴力出现负值的主要原因,当支撑轴力出现负值时应高度关注坑底隆起和地表下陷.  相似文献   

2.
采用有限元软件模拟分析了地铁车站基坑在施工期间邻近基坑开挖对既有车站基坑的影响,土体本构模型采用剑桥模型,分析结果表明邻近基坑的开挖会加大既有地铁车站基坑远端支护结构的水平位移和地表沉降,而近端的支护结构发生的部分回弹减少了水平位移,相应的地表沉降也减小了.所以在类似的基坑开挖过程中要对远端的支护结构和地表沉降进行重点关注.  相似文献   

3.
为了研究地铁基坑坑底加固对周边土体位移的影响,通过某软土地基地铁基坑南北测试段的水泥搅拌桩加固效果进行静力触探测试获得加固前、后锥尖阻力,计算得到南北测试段加固后土体无侧限抗压强度分别为0.58和1.17 MPa.对南北测试段表面沉降和地连墙水平位移进行实测,得到南北测试段地连墙最大水平位移分别为81.3、48.3mm,地表沉降最大值分别为-79.1、-40.2mm.建立Plaxis有限元计算模型,分析不同坑底加固效果工况下基坑开挖变形情况,模拟结果与实测结果基本一致.分析结果表明,南北测试段坑底加固后地连墙最大水平位移分别降低40%和64%,地表沉降分别降低26%和63%,地基加固能够有效地减小地铁基坑围护结构水平变形和地表沉降.  相似文献   

4.
某邻近地铁隧道深基坑施工监测分析   总被引:5,自引:1,他引:4  
基坑开挖中的土体卸荷效应会引起支护结构及周围地层的变位,从而对周边环境产生不利影响.对某邻近地铁区间隧道的深基坑施工进行了全过程跟踪监测,及时反映不同工况下基坑围护结构变形、支撑轴力及立柱回弹的变化特征,分析了基坑施工对周边环境特别是对邻近地铁隧道的影响.监测结果表明:围护结构的变形增量主要发生在基坑深层土体开挖阶段,开挖至坑底后变形趋于稳定;围护结构变形与支撑轴力具有关联性,围护结构的侧向变形越大,相应位置支撑的轴力也越大;坑底土体卸荷隆起带动立柱回弹,基坑中部回弹较大,基坑边角和施工栈桥附近回弹较小;开挖卸荷引起基坑附近一定范围内地表沉降和深层土体隆起,带动相邻地铁隧道上抬;基坑施工对邻近地铁隧道竖向变形的影响比对水平变形的影响更明显.  相似文献   

5.
城市深基坑开挖会对周边环境特别是浅基础建筑物的变形和安全产生影响。以南京市某深基坑工程为例,研究了基坑开挖对邻近多层建筑物变形的影响。首先建立了基坑的数值模型,将计算结果与实测值进行对比,验证了选取的材料参数与模型的合理性,然后对坑边多层建筑物的条形基础进行了模拟分析。结果表明:当有邻近条形基础存在时,围护墙的水平位移和坑边地表沉降均明显增大;邻近条形基础受开挖产生的附加沉降大于水平位移;增加基坑内支撑的数量可以使条形基础的附加沉降减小约14%。随着基坑与坑边距离的增加,土体竖向和水平位移的变化规律并不相同,当浅基础位于距坑边0.3He~1.0He(He为开挖深度)范围时,其沉降受开挖影响较大,距坑边较近时(<0.8He),土体水平位移呈现内凸形。当浅基础距离坑边超过1.0He后,土体水平位移明显减小。  相似文献   

6.
依托洛阳市周山大道下穿隧道深基坑工程,结合周边复杂环境及水文地质条件,研究渗流作用对卵石地层隧道基坑及邻近管线的影响规律。采用MIDAS GTS NX软件建立模型,结合现场监测分析了开挖过程中基坑周边土体位移、地表沉降值、支护变形规律,以及基坑开挖和降水对邻近管线变形的影响,并将数值计算结果与现场监测数据进行对比分析。结果表明:围护结构水平位移整体为前倾曲线,随嵌入深度先增大后减小,最大位移为13.94 mm,位于桩身中部,并在规范允许范围内;降水期间地表沉降程度加剧,与基坑距离1.5倍设计开挖深度以上时沉降几乎占据总位移60%以上;开挖深度超过6 m时邻近管线较上一工况最大沉降差为3.35 mm,竖向变形整体为下沉形态,位移最终呈现两端小、中间大的结果,具有明显空间效应。  相似文献   

7.
为研究基坑底部土体裙边加固对基坑变形和内力的影响,分别对未进行坑底加固和采用坑底裙边加固2种工况进行模型试验。在填土过程中预先浇筑加固土体,实现坑底土体加固。在基坑开挖过程中对地表沉降、冠梁侧向位移、桩身弯矩以及桩后土压力进行监测。用有限元软件Abaqus对模型试验进行拓展,将基坑变形的计算结果进行极差分析。研究表明,对坑底土体采用裙边加固,可以有效地减小支护结构的侧向位移;坑顶地表沉降虽有减小,但效果不明显;桩身弯矩略小于未进行坑底加固的工况;土体开挖,桩随着坑底下某一点发生转动,造成桩上半部分土压力减小,桩底处土压力增大;裙边加固尺寸中深度相较于宽度对基坑的变形影响更大;土体加固深度与宽度超过一定范围,控制基坑变形的效果有所提高但不明显,加固深度宜取0.3~0.4倍的开挖深度,宽度宜取0.35~0.45倍的开挖深度。  相似文献   

8.
为研究软土地层中超深地连墙施工对周边地层扰动影响,对苏州地铁5号线某车站地下连续墙施工进行现场监测研究.针对3幅相邻槽段施工,采用现场监测对施工过程中的土体侧向位移、地表沉降、分层土体沉降、周边建筑物沉降和土压力变化进行观测.发现单幅施工过程中,成槽开挖施工对地层扰动最大,地层变形显著;混凝土浇筑会对土体产生应力补偿,抑制地层变形;在混凝土硬化阶段,土体应力轻微释放,地层变形继续发展并趋于稳定.地层变形规律表明,浅层土体受扰动较大,土体变形较明显,最大土体侧向位移发生在地表,离槽段越近,沉降越明显,深层土体受到扰动则较小.相邻槽段施工对地层变形累积增加,但变化幅度较小.现场地连墙施工引起的周边建筑物沉降和倾斜均在可控范围内.  相似文献   

9.
以紧邻宁波地铁1号线某区间的深基坑为例,基坑开挖导致邻近左线隧道产生明显的位移和变形,局部位置甚至出现渗漏和开裂.结合现场资料和室内试验,获得硬化土模型参数,建立基坑和隧道共同作用的三维有限元模型,对比基坑开挖影响下隧道位移计算值与现场实测值,通过探究基坑围护结构、周围土体位移规律,分析并比较基坑分块开挖、被动区土体加固以及隔断墙等几种典型隧道保护措施的效果.分析结果表明,基坑分块开挖对隧道保护具有明显作用,而被动区土体加固和隔断墙对隧道保护效果较差.  相似文献   

10.
以降低城市地铁车站深基坑开挖对周围环境影响,保障地铁工程施工安全为目的,该研究依托西安市地铁二号线运动公园车站深基坑施工,对施工过程中钢支撑轴力、桩身水平位移、基坑周围地表沉降进行了现场监测,分析了工程开挖前后一段时期内基坑变形规律.研究结果表明:围护桩变形的最大部位在距桩顶2/3的基坑开挖深度处;距基坑长边10m左右地表变形随着基坑开挖深度增加,基坑开挖初期变形速率较大,随着开挖深度的增加,速率逐渐减小;钢支撑能够有效地限制围护桩的水平位移,随着基坑开挖深度和钢支撑的增加,钢支撑的轴力随之增大,最后随时间内力趋于稳定.  相似文献   

11.
软土地区深基坑开挖改变了周边土体的初始应力,引起周边土体的位移,对周边构筑物造成不均匀沉降、混凝土开裂等不利的影响,并且可能危及临近地铁隧道的安全.对基坑开挖引起的下卧隧道的隆起变形进行了研究并提出了实用的预测方法.基坑开挖土体卸载引起的土体变形采用了Boussinesq应力解进行求解,隧道反力引起的土体变形采用了弹性半空间Mindlin应力解进行分析.隧道本身变形采用了弹性的地下连续梁进行分析,并且考虑隧道与土体的相互作用.通过引入软土的非线性流变模型,考虑了软土变形的时间效应,因此可以对复杂开挖过程进行模拟分析.还对基坑开挖对隧道隆起的效应进行了讨论,通过上海市某重点工程实例的隧道隆起量的预测结果与实测值对比分析,隧道隆起的监测结果证实了该方法的有效性.  相似文献   

12.
基坑开挖卸荷会对邻近隧道产生影响,因此有必要对隧道的变形进行预测,确保隧道正常运行。针对目前计算模型的分析方法未考虑基坑壁应力卸荷对隧道位移的影响,以及有限元分析过程较为复杂繁琐,提出采用Mindlin解计算基坑壁与坑底卸荷的附加应力。然后将隧道结构视为弹性地基无限长梁,将开挖引起的附加应力施加于隧道结构上,建立隧道结构纵向变形方程,从而得到隧道位移及内力的计算公式。最后,将计算方法与数值模拟算例、工程实测进行对比分析,计算结果与其较为吻合。  相似文献   

13.
依托杭州沿江大道地下综合管廊深基坑工程,土体采用HSS模型进行有限元数值模拟,分析基坑降水开挖下基坑及邻近管线的变形,模拟结果与监测结果吻合较好,验证了有限元计算模型和参数选取的合理性。基于模拟提出隔断式基坑降水优化方案,并研究稳态渗流下隔水帷幕插入深度不同时基坑及邻近管线的变形响应。结果表明:随着悬挂式隔水帷幕深度加深,坑内外水头差线性增大,围护结构侧移峰值线性增大,管线竖向位移、坑外地表沉降线性减小;相较于悬挂式隔水帷幕,隔断式隔水帷幕对控制基坑降水引起的坑外地表沉降及邻近管线变形均有着显著优势,但对于围护结构变形控制则不利。  相似文献   

14.
结合实际深基坑工程,基于数值模拟计算,通过改变基坑周边超载距围护结构的距离,分析了超载作用位置对基坑围护墙体侧移、周围地表沉降和坑内土体回弹的影响.结果表明:超载在墙外距离(0.2~0.5)H范围内引起的围护结构水平变形最大;距基坑0.2,H处超载对地表沉降有较大影响,且离基坑较远的超载会引起地表出现两个沉降槽;坑内土体回弹主要受开挖控制,超载作用对其影响不大.  相似文献   

15.
基于Gibson土建立平行双孔隧道的三维实体结构计算模型,考虑衬砌与周围土体的共同作用,并在盾构开挖面处施加表面力以模拟切削刀盘的推进力效应,分析平行双孔隧道同步开挖及不同滞后距离异步开挖时隧道相互作用所引起的周边土体变形及收敛形式。研究表明,平行双孔隧道异步开挖时,滞后距离对超前开挖隧道周围的竖直沉降影响微小,而对后挖隧道断面竖直沉降以及左右隧道水平位移的影响较大;随两隧道间距的增加,开挖时相互的影响会随之减小。  相似文献   

16.
为探究基坑底部土体满堂加固对基坑变形和内力的影响,采用室内模型试验方法,研究了基坑底部土体满堂加固对基坑周围地表沉降、冠梁侧向位移、桩身弯矩以及桩后土压力变化的影响。运用ABAQUS有限元软件对模型试验进行数值模拟,将试验数据与数值计算结果进行对比,并分析了加固土体的水泥掺入比和加固深度对基坑变形的影响。结果表明:满堂加固对降低基坑底部隆起效果最为明显,对降低支护结构侧向位移较为明显,对减小地表沉降不明显;通过极差分析法得出,增加加固土体的弹性模量较增加加固深度对抑制支护桩侧向位移及坑底隆起更为有效;当水泥掺入比超过一定范围后,加固效果没有显著提升,建议在含水率为20%左右的软弱土层地区,水泥掺入比一般为5%~20%;土体的加固深度超过一定范围后,控制基坑变形的效果有所提高,但不明显,建议土体加固深度取0.4~0.45倍基坑深度。  相似文献   

17.
以西安地铁一号线朝阳门站—康复路站区段饱和软黄土地铁隧道为研究对象,通过施工期现场地表沉降变形监测,分析了在饱和软黄土特殊地层条件下隧道浅埋暗挖法施工引起的该区段地表沉降变形规律以及地表沉降槽分布特征。结果表明:在饱和软黄土隧道开挖时,随着掌子面的推进,隧道顶地表沉降可分为沉降微小阶段、沉降显著发展阶段、沉降缓慢阶段和沉降稳定阶段; 单线隧道开挖后的最大地表沉降量为18.89 mm,双线隧道开挖后的最大地表沉降量为36.4 mm; 已开挖隧道对围岩土体的扰动作用使得后开挖隧道的地表沉降发展较大; 双线隧道的地表沉降槽宽度接近单线隧道沉降槽宽度的2倍,因此可以将其近似为单线隧道地表沉降槽宽度与双线隧道轴线中点距离之和; 单线隧道开挖后地表沉降槽宽度为8.4~9.3 m,双线隧道开挖后地表沉降槽宽度为16.2~17.5 m; 隧道开挖施工的沉降槽宽度参数为0.435~0.467,单线隧道开挖后的地层损失率为0.765%~1.324%,双线隧道开挖后的地层损失率为1.231%~2.200%。  相似文献   

18.
顶管法工作井的坑内、坑外土体加固对控制地表沉降和围护结构的侧向位移有显著作用。以天津地区某人行地道为背景,首先研究了坑底土体加固深度和加固程度对围护结构的影响,确定了合理的加固深度和加固程度。然后结合盾构法进出洞口土体加固的工程经验,给出了较为合理的顶管法进出洞口土体加固的范围,并结合相关规范及工程经验提出了一种将进出洞口加固后的土体计入围护结构计算的方法。本文的研究成果和计算方法为顶管法工作井土体加固的设计提供了参考。  相似文献   

19.
为了研究工程渣土的物理力学特性,并提出增加矿坑填埋场容量利用率和减少工后沉降的填埋方法,对堆填年限为5 a、处于积水填埋工况的湖州德清花山填埋场进行调查研究. 通过原位测试及室内试验发现,工程渣土成分复杂,具有低渗透性、高压缩性、抗剪强度随水的质量分数增加而减小等工程特性,矿坑填埋场压实度低,地基承载力低,土体大多处于饱和状态,固结缓慢. 利用LANDFILL程序对填埋场进行沉降与容量分析,发现在积水填埋工况下,矿坑容量利用率低,且工后沉降大,不适合直接用作农业用地或建设用地;在不积水填埋条件下进行工程渣土回填或降低地下水位能大幅度提高矿坑容量,并有效减少工后沉降. 研究结果为填埋场安全及容量设计、地基处理和地下建筑物施工提供了优化方向、理论依据和数据参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号