首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大功率压接型IGBT器件更适合柔性直流输电装备应用工况,必然对压接型绝缘栅极晶体管(IGBT)器件可靠性评估提出要求。提出计及内部材料疲劳的压接型IGBT器件可靠性建模方法,首先,建立单芯片压接型IGBT器件电-热-机械多物理场仿真模型,通过实验验证IGBT仿真模型的有效性;其次,考虑器件内部各层材料的疲劳寿命,建立单芯片压接型IGBT器件可靠性模型,分析了单芯片器件各层材料薄弱点;最后针对多芯片压接型IGBT器件实际结构,建立多芯片压接型IGBT器件多物理场仿真模型,分析器件应力分布,并对各芯片及多芯片器件故障率进行计算。结果表明,压接型IGBT器件内部的温度、von Mises 应力分布不均,最大值分别位于IGBT芯片和发射极钼层接触的轮廓线边缘;多芯片器件内应力分布不均会导致各芯片可靠性有所差异,边角位置处芯片表面应力最大,可靠性最低。  相似文献   

2.
压接型高压IGBT是柔性直流输电用模块化多电平换流器(modular multilevel converter,MMC)中的核心器件,其在长期运行中逐渐发生热老化并最终失效,影响着MMC的运行性能。利用压接型高压IGBT的门极驱动信号演化规律监测器件状态对于是实现MMC子模块状态监测的重要手段。文中首先搭建了压接型IGBT功率循环试验平台,并在功率循环试验过程中定期测试器件门极驱动信号波形。结果表明随着老化循环次数的增加,压接型IGBT门极驱动电压上升沿米勒平台时间长度增大,门极驱动电流下降沿凹槽位置滞后。其次,对热老化失效以后的压接型IGBT芯片表面进行观测,发现芯片发射极门极氧化层附件出现裂纹,这一热老化失效形式是门极驱动信号变化的主要原因。最后,根据压接型IGBT内部多物理场耦合关系建立了有限元仿真模型,计算结果表明热应力在附加金属层与下钼层接触界面的边缘区域数值较大,在长期交变的应力疲劳后造成门极氧化层裂纹萌发,逐渐导致门极失效。文中研究结果说明了利用压接型高压IGBT门极驱动信号演化规律在线监测其门极老化状态具有一定意义。  相似文献   

3.
基于多物理场建模对比分析全压接和银烧结封装压接型IGBT器件的电-热应力。首先根据全压接和银烧结封装压接型IGBT的实际结构和材料属性,建立3.3 kV/50 A压接型IGBT器件的电-热-力多耦合场有限元模型;其次仿真分析额定工况下2种封装IGBT器件的电-热性能,并通过实验平台验证所建模型的合理性;然后研究了3.3 kV/1 500 A多芯片压接型IGBT模块的电-热应力,并探究了不同封装压接型IGBT器件电-热应力存在差异的原因;最后比较了2种封装压接型IGBT器件内部的电-热应力随夹具压力和导通电流变化的规律。结果表明银烧结封装降低了压接型IGBT器件的导通压降和结温,提升了器件散热能力;但银烧结封装也增大了IGBT芯片表面的机械应力,应力增大对IGBT器件疲劳失效的影响亟需实验验证。  相似文献   

4.
压接型IGBT器件内部芯片之间的动态均流特性直接影响着IGBT器件的坚固性与可靠性。考虑到并联均流实验的困难,现有的压接型IGBT芯片级并联均流研究通常都是通过提取器件内部封装结构的寄生参数,并结合IGBT芯片的等效电路模型,在电路仿真环境中开展的,不考虑器件外部电磁条件对器件内部电流分布的影响。然而,该文通过9枚压接型IGBT芯片的并联均流实验发现,各个通流支路之间存在显著的动态电流不均衡,而且电流的分布特性不仅与内部并联芯片的相对位置有关,还与连接器件的外部汇流母排存在明显的关联。为了揭示器件内部电流分布特性与外部汇流母排之间的耦合关系,该文对被测器件与外部汇流母排进行三维有限元建模,从频域和时域2个方面,计算IGBT器件内部的电磁场分布特性。频域计算表明,由于外部汇流母排与内部并联芯片存在磁场耦合(即电感耦合),当频率超过一定数值后,外部汇流母排会对各个通流支路的电流产生显著影响。时域计算进一步再现了并联均流实验中外部汇流母排对各个通流支路上动态电流分布的影响规律。结果表明,在压接型IGBT器件的设计和应用中,不仅需要关注器件内部芯片间的相对位置对动态均流特性的影响,同时也要关注外部汇流母排引入的电磁不对称性。最后提出一种对称化的母排设计方案,并通过三维有限元计算,证实对称化母排设计可明显改善器件内部的动态均流特性。  相似文献   

5.
压接式IGBT器件是柔性直流换流阀的核心,器件内部压强分布直接影响器件及系统可靠性,而内部压强又受各种材料及复合应力相互耦合作用,针对不同应力耦合效果及其对内部压强的影响,进行压接式IGBT器件物理场模型仿真以及器件内部最大压强分布趋势的研究。首先,基于3.3 kV/50 A压接式IGBT器件实际结构,建立了多物理场模型,分析了机械、机-热和机-热-电不同耦合模型下器件内部压强分布的差异,并获取了器件承受内部最大压强的薄弱环节及各种内部应力作用的耦合效果。然后,基于机-热-电耦合模型,分析了不同环境温度、外部压力、导通电流对压接式IGBT器件内部薄弱层最大压强及性能的影响。最后,建立了压接式IGBT器件功率循环平台,通过恒导通工况和功率循环实验验证了机-热-电耦合模型的有效性和薄弱层分析的合理性。研究结果表明,机-热-电耦合模型能更好地表征压接式IGBT器件多应力耦合作用效果,内部最大压强的薄弱环节为IGBT芯片与发射极钼层间,且内部最大压强随环境温度、外加压力和导通电流的增加而增加。  相似文献   

6.
针对压接型绝缘栅双极晶体管(IGBT)内部均流设计,对多芯片压接结构及其压力均衡、压接型IGBT芯片内部均流、子单元间均流等方面进行了研究和优化设计。试验验证了压接型IGBT具有良好的电流关断能力、短路电流能力及反偏安全工作区,器件内部均流状态较好。  相似文献   

7.
压接型绝缘栅双极晶体管(press pack insulated gate bipolar transistor,PP-IGBT)器件具有功率密度高、短路失效等优势,已被广泛应用于柔性直流输电换流阀中。现有压接型IGBT器件短路失效研究主要基于宏观测试结果,难以揭示由微观材料失效诱发器件短路失效的机理,该文基于圧接型IGBT器件短路测试结果,提出压接型IGBT器件短路失效机理的多层级模拟方法。首先,搭建短路冲击实验平台,基于短路实验获取失效发生条件与失效芯片;其次,建立压接型IGBT宏观器件——介观元胞模型,研究圧接型IGBT器件短路失效时器件–元胞复合应力变化规律;最后,建立微观元胞铝–硅界面分子动力学模型,分析短路失效发生条件,揭示短路失效机理,并提出芯片失效部位相对概率分布。结果表明,短路工况下芯片靠近栅极的有源区边角是最容易发生失效的薄弱区域,铝、硅材料失效是导致压接型IGBT器件短路失效的直接原因。  相似文献   

8.
多芯片并联的压接式IGBT器件是柔性直流输电设备中的关键部件,因制造工艺、回路寄生参数和热耦合问题使得器件内部应力分布不均,造成器件不均匀老化,使得内部温度不均程度加剧,进而使得电流分配不均。围绕不同温度差异下导致的电流分布不均问题展开研究。首先,对造成IGBT器件并联不均流的原因以及温度对不均流特性的作用进行分析。然后,利用单芯片压接式IGBT器件并联模拟多芯片器件内部的温度分布不均情况,进行温度分布不均匀程度对电流分配影响的实验。最后,通过实验验证并联器件间温度差异与不均流程度的关系。所提方法为提高器件的运行可靠性和对压接式IGBT失效机理认知奠定基础。  相似文献   

9.
多芯片并联的压接式IGBT器件是柔性直流输电设备中的关键部件,因制造工艺、回路寄生参数和热耦合问题使得器件内部应力分布不均,造成器件不均匀老化,使得内部温度不均程度加剧,进而使得电流分配不均。围绕不同温度差异下导致的电流分布不均问题展开研究。首先,对造成IGBT器件并联不均流的原因以及温度对不均流特性的作用进行分析。然后,利用单芯片压接式IGBT器件并联模拟多芯片器件内部的温度分布不均情况,进行温度分布不均匀程度对电流分配影响的实验。最后,通过实验验证并联器件间温度差异与不均流程度的关系。所提方法为提高器件的运行可靠性和对压接式IGBT失效机理认知奠定基础。  相似文献   

10.
按绝缘失效模式,将压接型绝缘栅双极型晶体管(IGBT)的绝缘问题分为漏电和放电问题。借鉴电力电子学科研究范式,提出从绝缘测试、物理分析和可靠设计3个维度进行压接型IGBT器件绝缘研究的方法。同时,分别从这3个维度对压接型IGBT器件绝缘研究现状进行分析。最后,根据绝缘测试要求和物理分析参数,给出压接型IGBT器件绝缘优值,为压接型IGBT器件绝缘可靠设计提供了量化指标。  相似文献   

11.
封装绝缘问题是压接型IGBT器件研制过程中面临的关键挑战之一,解决绝缘问题的关键是准确分析器件内部复合绝缘结构在运行工况下的电场分布特性。现有研究多在静电场或恒定电场下分析其静态电场特性,忽略了其在实际工况下的电场瞬态特性。针对刚性压接型IGBT器件,考虑到直流断路器用压接型IGBT面临的单次关断的实际工况,在电准静态场条件下,该文采用瞬态边界电场约束方程,准确计算压接型IGBT子模组复合绝缘结构中的瞬态电场,获得器件内部不同介质交界面上的界面电荷密度,详细分析瞬态电场的时空分布特性。在此基础上,该文从子模组的绝缘结构和封装绝缘材料参数两方面对子模组的瞬态电场进行调控,结果表明,该文所提控制方法能显著降低绝缘薄弱环节处的电场强度。  相似文献   

12.
压接型IGBT器件内部多颗芯片的并联连接是提高其电流等级的重要手段。然而,IGBT芯片之间的瞬态电流不均衡是限制其电流提升的主要原因之一。研究压接型IGBT器件内部的瞬态电流分布规律对于规模化IGBT并联封装设计具有重要意义。该文首先通过有限元软件提取了压接型IGBT器件内部的栅极、集电极和发射极的杂散电感,得到三个杂散电感随IGBT芯片不同位置的变化规律;其次对三个杂散电感差异下的电流分布进行了理论分析,发现电流分布主要受到功率回路和驱动回路的公共支路上杂散电感的影响;同时分别对开通和关断过程中IGBT芯片内部的载流子变化过程进行分析,发现发射极杂散电感差异主要影响开通过程的电流不均衡;然后针对三个杂散电感差异分别进行电路仿真,得到杂散电感差异对电流分布的影响规律,仿真结果验证了理论分析的有效性;最后建立了两芯片的并联均流双脉冲实验平台,平台能够调节两支路之间的杂散电感差异,实验结果进一步验证了该文理论分析的有效性。  相似文献   

13.
李辉  刘人宽  王晓  姚然  赖伟 《电工技术学报》2021,36(12):2505-2521
压接型IGBT器件是智能电网中大容量电力电子装备的基础核心器件,其可靠性直接关系到装备及电网的运行安全,而封装失效是其主要失效模式,封装退化监测是实现其故障诊断、状态预测及智能运维的关键.针对现有研究大多侧重于传统焊接型IGBT器件封装退化监测的问题,该文以压接型IGBT器件为研究对象,首先,介绍压接型IGBT器件封装结构;然后,系统分析微动磨损失效、栅氧化层失效、接触面微烧蚀失效、边界翘曲失效、弹簧失效、短路失效、开路失效共七种封装失效模式及对应的封装退化监测方法,并提出现有监测方法存在的问题;最后,从封装退化表征及评估、非接触式监测、高灵敏度监测三个方面,展望压接型IGBT器件封装退化监测新思路.  相似文献   

14.
开展电极结构与空间布置对压接型IGBT器件内部多芯片并联均流影响的实验研究。首先,比较多种IGBT/FRD芯片级并联均流实验电路,进而搭建压接型IGBT/FRD芯片级动态均流特性实验平台,对16枚FRD芯片开展动态均流测试。实验结果证实器件内存在复杂的动态不均流现象,进一步表明:发射极电极圆周化布置时,在对称的外部电磁条件下可以明显优化器件内部的并联均流特性,但当器件连接外部不对称汇流母排后,该设计方案收效甚微,甚至有加剧不均流的风险;发射极电极刻槽方案,对于对称或不对称的外部电磁条件都能对器件内部的动态均流特性加以改善。  相似文献   

15.
高压大功率压接型绝缘栅双极型晶体管(insulated gate bipolar transistors,IGBT)器件是柔性直流输电系统大容量换流阀的关键部件,其可靠性直接影响电力装备和输电系统的安全稳定运行。压接结构导致IGBT器件组件界面间电热接触性能不佳,研究人员利用纳米银焊膏开发出烧结封装IGBT以期克服对应问题,但其长期可靠性尚未得到验证。该文以国产3.3k V/50A单芯片银烧结压接封装IGBT器件为研究对象,建立直流加速老化实验平台以考核银烧结封装对国产压接IGBT器件的长期可靠性影响。然后,开展国产压接封装IGBT的功率循环加速老化实验,分析烧结封装IGBT器件的失效结果并与全压力封装IGBT器件实验结果进行对比。最后,分析烧结封装IGBT纳米银焊料熔融的原因并探究IGBT器件失效瞬间导通电压急剧上升的原因,获取银烧结压接封装IGBT器件的性能优势及潜在缺陷。实验结果表明,银烧结封装可以降低压接型IGBT器件的导通电压和通态损耗,减缓IGBT芯片与发射极钼层间的接触磨损,提升器件使用寿命。  相似文献   

16.
压接型IGBT器件封装材料间的接触电阻大小及分布规律直接影响其电热分布特性与运行可靠性,然而现有接触电阻计算的方法大都依赖于半经验模型,未能考虑表面形貌参数影响,难以准确表征,该文提出考虑材料表面形貌参数及接触压力影响的压接型IGBT器件接触电阻模型及影响规律研究。首先,基于电接触理论,建立考虑材料电阻率、接触面接触压力、粗糙度及微硬度参数的接触电阻数学模型。其次,通过分析材料表面特性选定接触电阻模型参数,建立单芯片压接型IGBT器件有限元仿真模型计算接触压力,获取器件内部接触电阻分布规律,并通过器件导通电阻测量,间接验证所建接触电阻模型的有效性。最后,分析接触压力、芯片电阻率及表面粗糙度对压接型IGBT器件接触电阻的影响规律。结果表明,相对COMSOL软件内置模型,所建接触电阻模型可更加准确地表征器件内部接触电阻变化规律。相比其他接触面,芯片与钼片间的接触电阻最大,且当接触压力较小时,接触电阻受电阻率、粗糙度及压力的影响更明显。  相似文献   

17.
压接型IGBT芯片在正常的运行工况下承受着电-热-力多物理量的综合作用,研究电-热-力影响下的IGBT芯片动态特性对于指导IGBT芯片建模以及规模化IGBT并联封装设计具有重要意义.为了全面获得电-热-力综合影响下压接型IGBT芯片的动态特性,该文结合双脉冲测试电路原理,研制出具备电-热-力灵活调节的压接型IGBT芯片动态特性实验平台.通过对动态特性实验平台关键问题进行有限元仿真计算,实现平台回路寄生电感、IGBT芯片表面压力分布及机械夹具温度分布的优化设计.在此基础上建立压接型IGBT芯片动态特性实验平台,对实验平台进行综合调试,结果表明,该文所设计的实验平台具有寄生电感小、IGBT芯片表面压力分布均衡及机械夹具各组件温度分布合理的特点,可以满足电-热-力综合影响因素下压接型IGBT芯片动态特性实验的需求.  相似文献   

18.
机械应力是影响高压大功率压接型IGBT器件电气特性、热特性以及可靠性的关键因素之一。首先,从芯片与封装结构设计的角度,介绍单芯片以及多芯片并联机械压力分布均衡特性的研究现状及其关键设计技术。其次,从封装工艺的角度,分别对比弹性压接、刚性压接等不同焊接形式对芯片机械应力分布的影响规律。最后,结合压接封装结构特点,基于一种新型芯片终端结构,提出一种新型封装技术方案,可以有效提升单芯片以及并联芯片压力的均衡特性,为高压大容量压接型IGBT器件的设计提供参考依据。  相似文献   

19.
机械应力是影响高压大功率压接型IGBT器件电气特性、热特性以及可靠性的关键因素之一。首先,从芯片与封装结构设计的角度,介绍单芯片以及多芯片并联机械压力分布均衡特性的研究现状及其关键设计技术。其次,从封装工艺的角度,分别对比弹性压接、刚性压接等不同焊接形式对芯片机械应力分布的影响规律。最后,结合压接封装结构特点,基于一种新型芯片终端结构,提出一种新型封装技术方案,可以有效提升单芯片以及并联芯片压力的均衡特性,为高压大容量压接型IGBT器件的设计提供参考依据。  相似文献   

20.
压接型封装全控器件由于其具有无焊点、无引线、双面散热的特点,逐渐在大容量换流器中得到了广泛的应用,其可靠性以及寿命预测也引起了学术界和工业界的关注。本文提出了一种基于等效电导率的压接型绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)器件温度场有限元仿真方法,直接反映了压接型IGBT器件内部芯片发热功率随温度变化的特性,进一步提高了温度场仿真的准确性,为模块可靠性分析和寿命预测建立了仿真计算基础。此外,对某型号压接型IGBT器件进行MMC工况下的温度场仿真,得到了该工况下模块内部温度分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号