首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyapatite (HAP) obtained from aqueous solutions under different conditions has been examined by high-resolution transmission electron microscopy (HRTEM) and electron diffraction, including selected-area electron diffraction (SAED) and microdiffraction. A Philips CM300 field-emission gun electron microscope with a Schottky W/ZrO field-emission tip and a spherical aberration constant of 0.65 mm was used at 300 kV. The HAP crystals had different sizes, ranging from a few nanometres to a few micrometres. Single-crystal diffraction patterns have been obtained from the largest microcrystals using the conventional SAED technique. Assemblies of nanoparticles gave only broad diffuse rings. Nevertheless, microdiffraction with electron microprobes 3.5–10 nm in diameter clearly indicated the crystalline character of the nanoparticles in these assemblies. Experimental HRTEM images, Fourier transforms and calculated images exhibited the fine structure of the HAP crystals.  相似文献   

2.
Major ampullate silk fibres from the orb-weaving spider Nephila madagascariensis were analysed by transmission electron microscopy. The fibres have a thin outer layer surrounding a column of apparently homogeneous material which contains elongate cavities orientated parallel to the silk fibre axis. The cavities appear similar to 'elongate vacuolar droplets' observed in the silk of Antheraea silkmoth larvae. The overall skin–core structure is probably the result of a rheological pattern originating in the two secreting regions recognized in Nephila silk glands; the cavities indicate material inhomogeneities.  相似文献   

3.
Interface reactions and fracture behaviour of fibre-reinforced Mg/Al alloys   总被引:1,自引:0,他引:1  
In the composite system carbon fibre/magnesium alloy the interface reactivity was varied over a wide range by adding different amounts of the alloying element aluminium (alloys: AM20, AZ91) and by using carbon fibres of different surface properties (fibres: M40J, T300J). The structure and composition of interlayers in these composites down to the atomic scale as well as their effect on the mechanical properties were studied systematically by the combination of high-voltage electron microscopy, high-resolution electron microscopy, energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy with scanning electron microscope in situ bending tests. As resulting microstructure and nanochemistry correlate with the micromechanical fracture behaviour of the metal matrix composites, the interface reactivity can be used as a parameter governing the composite properties.
In addition to precipitates of aluminium carbide, strongly influencing the fracture behaviour, there are also graphitic carbon ribbons and layers of nanocrystalline magnesium oxide at the fibre/matrix interface.
Increasing the reactivity of the composite system, three characteristic modes of fracture behaviour are observed: single fibre pullout, bundle fracture (the optimum composite) and brittle failure.  相似文献   

4.
Characterization of ultrafine coal fly ash particles by energy-filtered TEM   总被引:1,自引:0,他引:1  
In this study, energy-filtered transmission electron microscopy is demonstrated to be a valuable tool for characterizing ultrafine coal fly ash particles, especially those particles encapsulated in or associated with carbon. By examining a series of elemental maps (K-edge maps of C and O, and L-edge maps of Si, Al, Ti and Fe) recorded using the three-window method, considerable numbers of titanium and iron species with sizes from several nanometres to submicrometre were shown to be present, typically as oxides dispersed in the carbonaceous matrix. Crystalline phases, such as rutile and iron-rich oxide spinel, were also identified from electron diffraction patterns and high-resolution TEM images. Information about these ultrafine coal fly ash particles regarding their size, morphology, elemental composition and distribution, and crystalline phases, which has not been available previously in conventional ash studies, should be useful in toxicological studies and related environmental fields.  相似文献   

5.
Extended electron energy-loss fine structure (EXELFS) and selected-area electron diffraction (SAED) techniques have both been applied to the study of the crystalline structure of Pd clusters of average diameters ranging from bulk to 24 Å. The combined use of these techniques gives complementary information about the crystalline structure of Pd clusters. Both techniques show the same lattice parameter expansion, about 4% for the smallest Pd cluster, with respect to the bulk. The EXELFS analysis performed on the Pd-M4,5 edge shows a sizeable increase of structural disorder in the smallest cluster. SAED gives additional information about the Pd bulk sample, showing the occurrence of crystalline regions about 50 Å in diameter.  相似文献   

6.
The progress in transmission electron microscopy as applied in materials science is reviewed briefly, from the era of replica techniques in the 1940s and 1950s, through the development of the diffraction contrast technique in the late 1950s and 1960s, to the present day when instrumental resolution is sufficient to obtain structure images of a wide variety of crystalline solids. One of the most important advances has been the development of combined imaging and microanalytical techniques in a single instrument. The versatility of the TEM technique with atomic resolution and microanalytical facilities, the variety of signals and contrast effects available, and its universal application, establishes it as an essential tool in materials science for the foreseeable future.  相似文献   

7.
This paper addresses the creep behaviour of a woven SiCf–SiBC composite, tested in tension under a partial pressure of argon, between 1273 K and 1473 K. It appears that the creep strain begins from 1273 K and becomes larger at higher temperatures. Moreover, the shapes of the creep curves led to the assumption of the existence of two competing deformation mechanisms depending on the temperature domain. The creep mechanism involved is microcrack damage-creep. From higher resolution studies at higher scales (scanning electron microscopy, transmission electron microscopy (TEM) and high resolution electron microscopy (HREM)), many types of damage were observed, for example matrix microcracking, fibre/matrix debonding and fibre/matrix sliding. The observations via TEM and HREM enabled us to specify the existence or not of the classical creep mechanism of the constituents of the composite, and also to characterize the behaviour and the role of the different interfaces and especially of the pyrocarbon interphase. These multiscale observations will be discussed in order to highlight the creep-damage mechanism as a function of temperature of the SiCf-SiBC composites.  相似文献   

8.
Analytical scanning and transmission electron microscopy (SEM and TEM) studies of dental gallium alloys have been carried out. The Ga alloys were made by triturating a LU powder (Ag–Sn–Cu rich alloy powder) and a GF powder (Ag–Sn–Cu–Pd rich alloy powder) with a liquid Ga alloy containing Ga, In and Sn. The dental materials were found to be composites consisting of remaining, undissolved particles from the Ag-based alloy powders in a matrix of reaction products with the Ga alloy. SEM studies have been carried out to give an overview of the composites. The distribution of the elements was found by the X-ray mapping technique. The phases in the matrix and the remaining alloy particles have been identified by electron diffraction, high-resolution electron microscopy and energy-dispersive X-ray spectroscopy. The following phases were identified in the LU alloy: orthorhombic Ag3Sn, cubic Ag9In4, tetragonal β-Sn and hexagonal Ag2Ga. In addition to these well-known phases Ga-rich regions were observed consisting of an intergrowth of tetragonal CuGa2 and one of the cubic γ-Cu9Ga4 phases. In addition to these phases cubic Ga7Pd3 was found in the GF alloy. The anomalous setting expansion of the GF alloy may be explained by the presence of Ga7Pd3.  相似文献   

9.
Technical examination of a work of art is a necessary preliminary stage both for proper conservation/restoration of the work and for purposes of dating and/or authentication. There is a wide variety of methods and procedures, and of these a particularly valuable technique is stratigraphic analysis in view of the data that it furnishes on the composition of the pictorial layers of which a painting is composed. The techniques utilized in this type of analysis to date have been essentially light microscopy and scanning electron microscopy. Transmission electron microscopy can provide new data for characterization of pictorial layers, thanks to the possibility of individually using ultrathin sections of paint sample. This study provides morphological analysis and microanalysis by X-ray energy dispersion, with determination of the crystalline structure of each particle by electron diffraction. The sample preparation method for producing thin sections from the pictorial layers for examination in the TEM is described. This allows the stratigraphic section to be preserved exactly as applied by the artist. The first results from the examination of three microsamples from actual old works of art are presented. The individual components of each strata were successfully identified in all cases.  相似文献   

10.
A method for bacterial identification has been developed by means of studying the same histological sections through several types of microscopy. With this method, one section was processed and analyzed respectively for light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Sections of gingival biopsies were Gram stained and bacteria tentatively identified by LM. Photographs of the sections were taken and presketched transparent acetate sheets (PTAS) were made from the photos. The same section was later prepared for SEM, areas previously thought to contain bacteria were localized by placing the PTAS onto the SEM monitoring screen. The SEM specimens were subsequently processed for TEM, bacteria were located, and micrographs obtained. The results showed that out of ten diseased gingival biopsies observed under the LM, bacteria were found to be present in all the specimens and were identified as both Gram positive and Gram negative. By transferring the section from LM to SEM, the bacteria could be relocated and their morphotype (cocci, rods, etc.) clearly identified in most of the cases. Since cocci may resemble other biological granular structures under SEM, they require further analysis under TEM for additional positive identification. This study demonstrated that the method described here is a useful tool for assessing the presence and identifying bacteria within the gingival tissues.  相似文献   

11.
Abstract

Aluminium metal matrix composites are among the recent developments in engineering applications to meet the present day need of light weight, high strength/weight ratio and good wear properties. In the present study, AlSi10Mg alloy reinforced with 3, 6 and 9 wt-% alumina with constant 3 wt-% graphite particles was produced by stir casting technique. Microstructural investigations as well as evaluation of mechanical properties such as hardness, tensile strength and double shear strength were conducted on composites and unreinforced alloy specimens. Tribological behaviour of hybrid composites was studied using pin on disc test machine. Wornout surfaces were analysed using scanning electron microscopy, and wear debris were analysed using X-ray diffraction. Results revealed that the mechanical properties of hybrid composites were higher than unreinforced alloy. Dry sliding wear test results indicated that the aluminium alloy reinforced with 9 wt-% alumina and 3 wt-% graphite has highest wear resistance compared to unreinforced alloy.  相似文献   

12.
以Cu SO4与氧化石墨烯为原料利用原位还原技术制得纳微米结构铜/氧化石墨烯复合微粒。利用透射电镜(TEM)、场发射扫描电镜(FESEM)和X射线衍射(XRD)对Cu/氧化石墨烯复合微粒进行表征。将复合微粒修饰并添加到液体石蜡中,利用四球摩擦磨损试验机考察其摩擦学性能。结果表明,利用原位还原技术制备的纳微米结构的Cu/氧化石墨烯复合微粒中铜的粒径在100 nm之内;在392 N、1 450 r/min、30 min实验条件下,质量分数2.0%的复合微粒可使液体石蜡的摩擦因数下降33%,质量分数0.5%的复合微粒可使钢球磨斑直径下降25%。  相似文献   

13.
Following Na-hypochlorite digestion of lung tissue, mineral particles extracted in the chloroform layer were deposited directly on a pre-smoothed carbon planchet for combined scanning electron microscopy and X-ray energy dispersive spectrometry (SEM and XEDS). Total mineral particle counts were obtained, and detailed physical characteristics of the fibrous particles were documented at 600, 1,500, 4,500 and 9,000 x in three lungs without, and one lung with, histories of occupational exposure. This preparation method was simple, collected more than 99% of identifiable mineral particles in the chloroform layer, gave excellent object to background contrast without heavy metal coatings, and was suitable for XEDS. Comparable fibrous particles from the chloroform layer could also be studied by selected-area electron diffraction to complement the results of XEDS. By this method, we found particles or fibers larger than 0.1 μm were readily counted and measured at 4,500 x. At 600 x, ferruginous bodies were found to be more than twice in number than when sought for by light microscopy. It was determined that 4,500 x is the most efficient magnification to examine and diagnose this type of specimen. The present study illustrates the importance of determining the most efficient magnification to be utilized in particle counts.  相似文献   

14.
We present a critical review of methods for defining the chemical environment during liquid cell electron microscopy investigation of electron beam induced nanomaterial growth and degradation. We draw from the radiation chemistry and liquid cell electron microscopy literature to present solution chemistry and electron beam–based methods for selecting the radiolysis products formed and their relative amount during electron irradiation of liquid media in a transmission electron microscope. We outline various methods for establishing net oxidizing or net reducing reaction environments and propose solvents with minimal overall production of radicals under the electron beam. Exemplary liquid cell electron microscopy experiments in the fields of nanoparticle nucleation, growth, and degradation along with recommendations for best practices and experimental parameters are reported. We expect this review will provide researchers with a useful toolkit for designing general chemistry and materials science liquid cell electron microscopy experiments by ‘directing’ the effect of the electron beam to understand fundamental mechanisms of dynamic nanoscale processes as well as minimizing radiation damage to samples.  相似文献   

15.
The techniques of reflection electron microscopy (REM) using TEM instruments and scanning reflection electron microscopy (SREM) using STEM instruments have been explored as means for the observation of surface structure with high spatial resolution, better than 1 nm in each case. Under the ordinary environment of a commercial TEM instrument, we have studied the contrast in REM images of atomic steps and made comparison with the calculated results from the multi-slice dynamical diffraction theory. Comparison has also been made between the REM images of defects and the calculated images based on the column approximation. The influence of surface resonances on the contrast has been investigated. By SREM performed in a modified HB5 STEM with attached high vacuum preparation chamber, we have observed the formation of periodically distributed Pd particles on the surface of cleaved MgO.  相似文献   

16.
Understanding the solid-state reactions involved in metal/ceramic systems is important when combining the two types of materials into a composite. In this investigation, the solid-state reaction between Al2O3 (alumina) and a β-Ti alloy has been characterized by transmission electron microscopy (TEM), scanning electron microscopy, parallel-acquisition electron energy-loss spectroscopy and X-ray energy-dispersive spectroscopy. Two different systems were used to investigate this reaction. The first system utilizes a controlled reaction geometry and involved diffusion bonding single-crystal α-alumina and a β-Ti alloy. Here, three interfacial regions were found to form: a region of intermetallics (Ti3Al and TiAl) located near the alumina interface, an α-Ti region, and a β-Ti region (rich in Mo, the β-phase stabilzer). Analysis of cross-section TEM samples of this reaction revealed the presence of both Ti3Al and TiAl at the alumina interface. Orientation relationships between the intermetallics and the alumina are discussed. In the second, system, interfacial reactions inside metal–matrix composites that contain alumina and a β-Ti alloy were investigated. Here, different coatings used in the MMCs are investigated for their ability to prevent the reaction between the matrix and fibres. Reaction products inside the MMCs are compared with those found in the model reaction geometry.  相似文献   

17.
CdSe quantum dots (QDs) grown on ZnSe were investigated by various transmission electron microscopy (TEM) techniques including diffraction contrast imaging, high-resolution and analytical transmission electron microscopy both of plan-view as well as cross-section specimens. The size of the QDs ranges from about 5–50 nm, where from the contrast features in plan-view imaging two classes can be differentiated. In the features of the smaller dots there is no inner fine structure resolvable. The larger ones exhibit contrast features of fourfold symmetry as expected for pyramid-like islands. Corresponding simulations of diffraction contrast images of truncated CdSe pyramids with the edges of the basal plane orientated parallel to <100> are in relatively good agreement with this assumption. In TEM diffraction contrast imaging of cross-section samples the locations of the quantum dots are visualized by additional dark contrast features. The QDs have a distinct larger extension in growth direction compared to the almost uniformly thick CdSe wetting layer. The presence of the CdSe QDs was also confirmed by energy-dispersive X-ray spectroscopy.  相似文献   

18.
A simplified and standardized technique for close correlation between light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) is described. Perfusion and immersion fixed tissue specimens were embedded in Epon 812 and cut for conventional LM and TEM. The Epon blocks with remaining tissue were thereafter treated with epoxy solvent (ethanol-NaOH solution) for partial epoxy resin removal only (dissolving rate approx 33μm/h). The blocks with partially blotted tissue specimens were then critically point dried and gold coated for SEM. This method, in an easy way, allows repeated observations with LM, TEM and SEM with preserved fine structure and exact correlation. Since the technique is so simple and there is no need for special equipment the method can easily be adopted in all laboratories with basic SEM standards.  相似文献   

19.
Morphometric characterization of nanoparticles is crucial to determine their biological effects and to obtain a formulation pattern. Determining the best technique requires knowledge of the particles being analyzed, the intended application of the particles, and the limitations of the techniques being considered. The aim of this article was to present transmission (TEM) and scanning (SEM) electron microscopy protocols for the analysis of two different nanostructures, namely polymeric nanoemulsion and poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles, and to compare these results with conventional dynamic light scattering (DLS) measurements. The mean hydrodynamic diameter, the polydispersity index, and zeta potential of the nanostructures of polymeric nanoemulsion were 370.5 ± 0.8 nm, 0.133 ± 0.01, and ?36.1 ± 0.15 mV, respectively, and for PLGA nanoparticles were 246.79 ± 5.03 nm, 0.096 ± 0.025, and ?4.94 ± 0.86 mV, respectively. TEM analysis of polymeric nanoemulsion revealed a mean diameter of 374 ± 117 nm. SEM analysis showed a mean diameter of 368 ± 69 nm prior to gold coating and 448 ± 70 nm after gold coating. PLGA nanoparticles had a diameter of 131 ± 41.18 nm in TEM and 193 ± 101 nm in SEM. Morphologically, in TEM analysis, the polymeric nanoemulsions were spherical, with variable electron density, very few showing an electron‐dense core and others an electron‐dense surface. PLGA nanoparticles were round, with an electron‐lucent core and electron‐dense surface. In SEM, polymeric nanoemulsions were also spherical with a rough surface, and PLGA nanoparticles were round with a smooth surface. The results show that the “gold standards” for morphometric characterization of polymeric nanoemulsion and PLGA nanoparticles were, respectively, SEM without gold coating and TEM with negative staining. Microsc. Res. Tech. 77:691–696, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Magnetite crystals inside coccoid magnetotactic bacteria found in lagoons near Rio de Janeiro city were examined by electron microscopy (EM) and atomic force microscopy (AFM). For AFM, ultrathin sections of bacteria embedded in Epon resin were etched with an ethanolic NaOH solution and observed both in the height and in the force modes. Comparative electron microscope images were useful for identifying crystalline reliefs in the etched sections. Different situations representing particular arrangements of crystal chains were observed by AFM. The majority of the bacteria examined presented unusually large magnetite crystals which remained strongly attached in linear chains even after the laboratory procedures for their isolation. This behaviour is different from all other biogenic magnetite crystals isolated so far. It is suggested that this attachment is due to the strong field between individual crystals as well as to the contact areas, which are the largest observed until now. The correct identification of a particular topography by AFM as a crystal relief may be critical when crystals are not aligned in chains; in these cases the linear dimensions and the presence of well-defined edges and faces are important features to be taken into account. Characterization of the crystal faces is important for the study of magnetotactic micro-organisms since the crystalline habits seem to be species-specific. Observation of etched sections proved to be a helpful approach for crystal relief observation, especially when small amounts of bacteria were available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号