首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Normal phase preparative and semi-preparative liquid chromatography were used to isolate fractions of varying polarity from corn, soybean and sunflowerseed oils. Reported here is the composition of one fraction, less polar than triglycerides, determined by isolating the individual ?peaks? of a semi-preparative separation using as starting material the mix of compounds obtained from a large scale separation. These peaks were then analyzed by high performance liquid chromatography (LC) gas chromatography (GC), mass-spectrometry (MS) with and without GC, in both electron impact (EI) and chemical ionization (CI) modes, and carbon-13 nuclear magnetic resonance (NMR) spectroscopy. Semi-quantitative data were obtained for many of the components found in these semi-preparative isolates including hydrocarbons, steryl esters, triterpenyl esters, phytyl esters and geranylgeranyl esters. The weight percent and composition of the preparative fraction differed substantially among the three oils. Corn oil had the greatest amount, at 1.25% of the starting oil, and was composed mostly of steryl and triterpenyl esters. Sunflowerseed oil, at 0.7%, and soybean oil, at 0.3%, showed greater variety in that branched chain esters were included with the steryl/triterpenyl distributions.  相似文献   

3.
4.
In the search for economical cocoa butter alternatives, palm and lauric oils have emerged as important source oils in the development of hard butters. Based on the method presented for categorizing hard butters, the lauric oils, primarily palm kernel and coconut, can be modified by interesterification and hydrogenated to yield lauric cocoa butter substitutes (CBS) which are both good eating and inexpensive. Fractionation, although adding to the cost of production, can provide lauric hard butter with eating qualities virtually identical to cocoa butter. Unfortunately, one factor identified with the lauric oils is their very low tolerance for cocoa butter. Palm oil, on the other hand, has been identified as a valuable component in all types of cocoa butter alternatives. It is a source of symmetrical triglycerides vital in the formulation of a cocoa butter equivalent (CBE). It can be hydrogenated or hydrogenated and fractionated to yield hard butters with a limited degree of compatibility with cocoa butter, allowing some chocolate liquor to be included in a coating for flavor enhancement. Palm oil is used with lauric oils as a minor component in interesterified lauric hard butters, as well as functioning as a crystal promoter in coatings formulated with a fractionated lauric CBS. While palm oil’s importance and flexibility have been duly noted, some important concerns remain from a market perspective. The fact that the CBE fats are very expensive suggests they offer limited cost savings compared to cocoa butter. The potential for CBE products is still questionable in those countries where chocolate labeling standards preclude the use of vegetable fats other than cocoa butter. The nonlauric CBS products, while cheaper than the CBE types and able to tolerate limited levels of cocoa butter, do not exhibit the level of eating quality characteristics present in the lauric hard butters. Some challenges remain for today’s oil chemists. An economical nonlauric CBS, made predominantly from palm oil, possessing the eating quality of a fractionated lauric CBS and exhibiting good compatibility with cocoa butter would be met with considerable interest by the chocolate and confectionery industries. As for the lauric oils, it would seem reasonable to assume that greater cocoa butter compatibility, if attainable, could enhance their potential for gaining even greater acceptance by confectionery manufacturers currently using pure chocolate. As for the CBE products, the major issue is cost. If the cost of a CBE could be reduced to a level which would allow a CBE to compete with the nonlauric and lauric cocoa butter substitutes, a major advancement in the evolution of cocoa butter alternative fats will have been achieved.  相似文献   

5.
Palm oil, palm stearin, hydrogenated palm oil (IV 27.5) and hydrogenated palm olein (IV 28) were crystallized at 5°C, temperature cycled between 5 and 20°C, and kept isothermally at 5°C for 36 days. The polymorphic state of the fats was monitored by X-ray diffraction analysis. Soft laser scanning of X-ray films was used to establish the increase inβ crystal content. Palm stearin was least stable in theβ′ form, followed by palm oil. The hydrogenated oils were very stable in theβ′ form. Differential scanning calorimeter (DSC) analysis was used to complement the X-ray data.  相似文献   

6.
通过热重/微商热重-差热联用分析手段(TG/DTG-DTA)对比分析了一种轻质油和一种重质油的氧化特性和氧化动力学参数。实验结果表明:重质油和轻质油在常压空气流条件下的氧化反应都可以观察到3个明显的反应区间,分别为低温氧化反应(LTO),燃料沉积(FD)和高温氧化反应(HTO)。DTA曲线显示重质油在低温氧化(LTO)和高温氧化(HTO)反应区间的放热峰热流量均高于轻质油,且在高温氧化反应阶段(HTO)更明显。对比分析TG和DTG曲线发现,重质油开始发生快速热重损失及出现最高质量损失速率的温度均高于轻质油。采用Arrhenius方法和Ingraham-Marrier(I-M)方法计算的重质油的氧化反应活化能(LTO,26.19—26.45 kJ/mol和HTO,150.45—157.11 kJ/mol)均高于轻质油的活化能(LTO,12.33—13.75 kJ/mol和HTO,107.31—122.31 kJ/mol),表明轻质油更容易和氧气发生氧化反应。这表明,相比稠油油藏注空气,轻质油藏注空气技术更容易实现较好的驱油效果。  相似文献   

7.
油品蒸发损耗及油气回收技术   总被引:17,自引:3,他引:14  
石油及其产品在加工和储运过程中产生的蒸发损耗是困扰石油加工储运和环保行业的重要课题,推广和采用油气回收技术十分迫切和重要。本文介绍了常见的4种油气回收技术吸附法、吸收法、冷凝法和薄膜选择渗透法,分析了各种油气回收方法的发展方向,特别介绍了活性碳纤维作为新型油气回收吸附材料的应用前景。  相似文献   

8.
生物柴油--快速发展中的油脂化工新产品   总被引:1,自引:0,他引:1  
简述了我国目前石油化工和煤化工的情况以及我国发展生物柴油的重要性。回顾了世界生物柴油作为一种工业产品的发展史。指出了我国目前发展生物柴油所存在的问题,并对我国开发生物柴油新产品进行了分析。提出了开发生物柴油的必要性及重要性,以及生物柴油广泛的市场前景。  相似文献   

9.
Owing to its high content of omega‐6/omega‐3 fatty acids and bioactive minor components with antioxidant activities, hemp seed oil is now recognized for its health benefits by a large number of consumers. This paper primarily discusses the profile of minor components in hemp seed oil and their beneficial and adverse effects on oil quality. While tocopherols, polyphenols and phytosterols prevent oxidative deterioration of hemp seed oil, the high amount of chlorophyll can be detrimental to oil quality.  相似文献   

10.
11.
The difliisivity of water in parafin oil and grortndnrit oil has been measured at 24°c using a simple difusion cell. The measured diffusivity of water in parafin oil conipares well with previous determinations. The diffusivity of water in graundnut oil at 24°c and those predicted at higher temperatures are the only experimentally based data available at present. The measurment extend the data present range of knowledge to higher molecular weight and higher viscosity solvents aid reinforce the demanand of previous investigation for more experimental data outside the range of present correlations.  相似文献   

12.
Cocoa butter equivalent (CBE) formulation, especially the compatibility of palm oil based CBE with cocoa butter, is of special interest to chocolate manufacturers. Traditionally palm oil is fractionated to obtain high-melting stearin and olein with a clear point of around 25 C, the latter serving as cooking oil. Recently, palm oil has been fractionated to recover an intermediate fraction known as palm mid-fraction (PMF), which is suitable for CBE formulations. Generally, production of PMF is based on a three-step procedure. However, a dry fractionation system, which includes selective crystallization and removal of liquid olein by means of a hydraulic press, has been developed. Iodine value, solid content (SFI) at different temperatures, cooling curves (Shukoff 0°) and triglyceride/fatty acid composition determination confirmed effectiveness of the procedure followed. A direct relationship between yield, quality of PMF and crystallization temperature during fractionation has been achieved. Yield of 60% for olein of IV 64–67 has been achieved. Yield of 30% for PMF of IV 36–38 and 10% for high melting stearin of IV of 20–22 are also being achieved. High-melting stearin may be used in oleochemical applications, soaps, food emulsifiers and other industrial applications such as lubricating oil. Olein fraction, especially after flash hydrogenation thereby reducing the IV to 62/64, has excellent frying and cooking oil characteristics. Palm olein is also suitable as dietary fat and in infant formulation. Studies on interesterification of high-melting stearin with olein showed possibilities to formulate hardstocks for margarine and spread formulations, even without using hydrogenated fat components. Palm kernel and coconut fats or fractions or derived products are used for confectionery products as partial CB replacers and as ice cream fats and coatings. Coconut oil also serves as a starting material for the production of medium-chain triglycerides.  相似文献   

13.
One of the major difficulties in using crude vegetable oils as substitute fuels in diesel engines is their relatively high viscosities. Increasing the temperature of the crude vegetable oil, blending it with diesel oil, or the combination of both offers a simple and effective means of controlling and lowering the viscosities of vegetable oils. This work reports viscosity data, determined with a rotational bob-and-cup viscometer, for crude palm oil and cononut oil blended with diesel oil over the temperature range of 20–80°C and for different mixture compositions. All the test oil samples showed a time-independent newtonian type of flow behavior. The reduction of viscosity with increasing liquid temperature followed an exponential relationship, with the two constants of the equation being a function of the volume percentage of the vegetable oil in the mixture. A single empirical equation was developed for predicting the viscosity of these fuel mixtures under varying temperatures and blend compositions.  相似文献   

14.
15.
16.
17.
In this study a novel macromer technique has been described for the styrenation of triglyceride oils. Macromers were prepared through the interesterification of castor oil with linseed oil followed by esterification with acrylic acid. In this preparation various castor oil/linseed oil ratios were applied to obtain a macromer which gave a copolymer with good film properties after copolymerization with styrene. Macromers were styrenated at 100°C using benzoyl peroxide as an initiator. The styrenation leads to improved film properties with the related interesterification product although castor oil is a non‐drying oil.  相似文献   

18.
Effective sorbents based on nonwoven polymer materials have been synthesized for cleaning up oil and oil products spills from the water surface. The influence of structural characteristics of materials (a width of fabrics, a fiber diameter, a density of fiber packing in fabric) on their sorption capacity has been revealed. It has been shown that the materials based on polypropylene and polyether fibers exhibited the high sorption capacities in respect to oil and oil products.  相似文献   

19.
Karanja seed(Pongamia glabra) oil contains toxic flavonoids including 1.25% karanjin and 0.85% pongamol. After refining the oil resembles peanut oil in composition and is free from toxic flavonoids, bitterness and unpleasant odors. Akashmoni seed(Acacia auriculaeformis) oil is rich in stearic acid (31%), and nearly two-thirds of its glyceride is GS2 U (disaturated monounsaturated), mostly SOS (saturated-stearic acid and unsaturated-oleic acid). Nutritional evaluations of these two refined seed oils were carried out in rats by feeding the respective oils and peanut oil as control at 10% level in a 20% protein diet for 12 weeks. The animals fed karanja oil showed poor growth performance, altered lipid metabolism and fatty infiltration in liver. Akashmoni oil in the diet of rats did not reveal growth retardation or any abnormalities in evaluations of lipid parameters of serum and liver or histopathological findings. The results of this study indicate that refined karanja oil is toxic to rats and may not be desirable for edible purposes, while akashmoni oil may be desirable.  相似文献   

20.
Mesta seed oil (Hibiscus sabdariffa), like cottonseed oil, contains cyclopropenoid fatty acids (2.9%) and epoxy fatty acids (2.6%) in addition to normal fatty acids found in vegetable oils.Cleome viscosa (Capparidaceae) seed oil is rich in linoleic acid (70%) and free from any abnormal chemical constituents. Nutritional and toxicological evaluations of these two oils were done by multigeneration breeding studies by feeding the respective oils and groundnut oil as control at 10% level in a 20% protein diet with adequate vitamins and minerals. These studies revealed that rats fed mesta oil had inferior growth and reproductive performance and also had altered liver metabolism. Rats fedC. viscosa oil did not show any abnormal growth or reproductive performance or altered liver lipid levels. Thus, these studies indicate that raw or refined mesta oil may not be suitable for human consumption whereasC. viscosa oil can be used safely by humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号