首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
根据七轴五联动螺旋锥齿轮磨齿机的结构模型和数控磨削原理,采用热传导和矩形移动热源理论及有限元分析方法,建立了磨齿温度场有限元分析3D模型和磨齿瞬态温度场。由此,对热和结构两个物理场进行耦合,仿真分析了磨齿瞬态热特性。实例分析表明,磨齿瞬态最高温度远高于磨齿稳态温度,且位于磨削弧中心;其它各点的瞬态温度,随位置、时间以及其它影响因素的不同,呈现不同的变化规律。磨齿瞬态热应力、热变形与磨齿瞬态温度密切相关,同时还受结构、材料特性和磨削条件等因素影响,磨齿瞬态最大热应力与热变形位于磨齿瞬态最高温度附近。在其它条件相同时,采用油基磨削液的瞬态最高温度、热应力与热变形均比采用水基磨削液时要大。这些研究为控制螺旋锥齿轮磨削质量以及磨齿热变形的修形提供了依据。  相似文献   

2.
3D力热耦合磨齿模型与数值分析   总被引:2,自引:0,他引:2  
根据螺旋锥齿轮的数控磨齿原理,得出磨齿基本参数的理论模型和物理意义上的磨削力计算公式;应用单磨粒热模型计算了磨齿热量分配比,采用矩形分布热源得出磨齿热流量.以热弹塑性变形理论为基础,采用PRANDTL-REUSS方法建立磨齿界面应力应变场本构关系;齿轮材料采用双线性等向强化模型,用3D力热耦合有限元单齿模型和小步距载荷移动方法,实例进行瞬态温度场的仿真.结果表明,磨削瞬态最高温度位于磨削弧中心,其他各点的瞬态温度,随磨削条件、空间和时间等影响因素的不同,呈现相应的变化规律.试验与力热耦合仿真的数值比较分析表明,构造的3D力热耦合磨齿模型有较高的精度,能为螺旋锥齿轮磨齿质量的控制提供依据.  相似文献   

3.
根据面齿轮碟形砂轮磨削原理,采用瞬时椭圆接触理论对磨削基本参数求解,建立了磨齿温度场有限元模型,进行了磨齿瞬态温度场有限元仿真。通过仿真与实验分析,为磨削基本参数优化、提高磨削质量和进一步研究面齿轮磨削温度场提供依据。  相似文献   

4.
基于矩形移动热源理论分析了成形磨齿工艺参数对磨削温度的影响。根据有限元离散化原理,建立了干式磨削瞬态温度场数学模型。根据热量分配关系,导出了磨削区热流密度的理论计算公式。在磨削区施加由不同磨削工艺参数计算得到的热流密度,进行了瞬态温度场的三维有限元仿真,从而得出了不同工况下齿面温度场的变化规律。  相似文献   

5.
本文基于有限元分析理论,对干磨和湿磨两种磨削工况下的成形磨齿温度场进行了瞬态分析,并讨论了磨削区某一节点处干磨和湿磨温度随时间的变化情况。研究表明,磨齿加工过程中,齿面末端靠近齿根处温度最高,非常容易出现磨削烧伤。两种磨削工况下,磨削温度迅速升高,并且干磨温升速率大,但是湿式磨削温度和干式磨削温度下降速率几乎相同。  相似文献   

6.
针对传统热胶合计算闪温法和积分温度法的不足,在考虑齿轮初期啮合和实际工况的条件下,运用有限元方法和传热学理论建立直齿圆柱齿轮模型、加载边界条件并对其瞬态温度场进行仿真,得到了轮齿瞬态温度场的分布云图,研究了温度场的分布规律,得到了轮齿瞬态温度,最后对比了轮齿瞬态温度与闪温理论值。结果表明:闪温法偏于保守,考虑初期啮合的瞬态热胶合分析结果更符合实际工况,为指导齿轮靠性设计热胶合、热应力、热变形等提供了重要依据。  相似文献   

7.
姜峰  杨曦  赵维乐  周文海  陈斐  俞瑞利 《流体机械》2021,49(3):34-39,67
根据传热学理论建立传热学模型,运用ANSYS有限元分析软件建立三维有限元模型和温度场,以瞬态温度场和热-结构耦合为基础,研究了不同升温速度对垫片密封性的影响。结果表明:受温度影响产生的热应力会造成法兰接头各元件应力及变形的变化,并且一定程度上会加剧垫片应力不均匀;并且升温速度越快,垫片应力下降越快,变形量增加越快,对密封造成的不良影响越大。另外本文还采用瞬态温度场对温度波动工况进行了研究,结果表明,温度波动会导致垫片内外侧变形增大而应力减小,大大降低密封可靠性。  相似文献   

8.
基于温度场的螺旋锥齿轮啮合热特性分析   总被引:1,自引:0,他引:1  
根据螺旋锥齿轮啮合方程,采用“自底向上”的实体建模方法和八节点六面体等参元,建立其三齿的有限元分析3D模型;采用热传导理论,求解了螺旋锥齿轮本体稳态温度场。由此,对热和结构两个物理场进行耦合,仿真分析了啮合过程热应力和热变形。实例分析结果表明,螺旋锥齿轮副多齿啮合时其中一个齿的啮合中心稳态温度较高,热应力最大处在齿根部位,靠近啮合中心的齿顶部位的热变形最大;由于结构、材料特性等多因素影响,最大热应力和热变形部位不与最高温度点重合。这些为螺旋锥齿轮的设计制造和使用提供了一定依据。  相似文献   

9.
热变形是影响超精密摆线轮成型磨床综合精度的重要因素之一,为了探究超精密摆线轮成型磨床人造花岗岩床身在工作中的瞬态热应力、热变形情况,利用三维设计软件和有限元软件协同仿真的方法,建立超精密摆线轮成型磨床人造花岗岩床身模型,通过对床身施加边界条件及相关载荷来获得床身的瞬态温度场,以获取床身的瞬态热变形、热应力。最后,根据超精密摆线轮成型磨床床身热变形及温度场分布状况,提出了改善床身热变形的若干措施。  相似文献   

10.
建立涡轮增压器转子的有限元模型,采用有限元软件ANSYS,通过热结构耦合分析,考虑稳态和瞬态温度场作用下,计算转子涡轮和压气机叶轮的应力云图,得到最大等效应力,分析不同转速条件下涡轮增压器转子的应力变化规律。结果表明:稳态温度场作用下,转子的温度分布呈现线性关系,与瞬态温度分布有一定差别。稳态与瞬态温度场作用下转子涡轮的最大等效应力随着转速的增加不断增大。不同的是,随着转速增加,稳态温度场条件下压气机叶轮的最大等效应力逐渐降低,而瞬态温度场作用时最大等效应力不断增大。  相似文献   

11.
弧齿锥齿轮传动的稳态本体温度场分析   总被引:7,自引:1,他引:6  
针对弧齿锥齿轮几何学的复杂性,基于传热学理论,提出了一种计算弧齿锥齿轮稳态体温度场的数学模型,用三维8节点有限元讨论了弧齿锥齿轮轮齿的有限元网络划分。作者用变分原理研究了弧齿锥齿轮稳态本体温度场的泛函和计算啮合齿面上摩擦输入热的方法,从而把求解弧齿锥齿轮稳态本体温度场归结为求解一组线性代数方程组。给出了一个算例,并讨论了诸种因素(如热物性参数,几何参数和工况条件等)对弧齿锥齿轮稳态本体温度场的影响。本文的计算结是要与文献[5]给出的弧齿锥齿轮稳态本体温度场相符合,表明了作者所提出的方法是一种合理的和有效的方法。  相似文献   

12.
分析弧齿锥齿轮热处理后精加工原理,归纳出各种加工方法的特点和应用范围。为了消除弧齿锥齿轮热处理后的变形,采用珩齿、硬齿面刮削、磨齿、研齿加工工艺。根据以上加工方法特性,介绍了UMC/UMG磨削技术的应用和弧齿锥齿轮的新型加工方法。  相似文献   

13.
弧齿锥齿轮工作时齿面接触应力的大小直接影响其使用寿命和安全。利用CATIA的逆向工程技术建立齿轮的三维模型,利用CATIA和ABAQUS的无缝连接接口,将齿轮的三维模型导入有限元软件ABAQUS中。在ABAQUS环境下,给定齿轮的材料和设定齿轮的工况对齿轮接触应力分析,得到齿轮最危险部位的应力应变。  相似文献   

14.
螺旋伞齿轮作为重型车辆传动系统的关键零部件,其表面完整性对整车机动性和可靠性起着关键作用。磨削作为齿轮最后一步加工工序,磨削过程产生的残余应力将直接影响齿轮疲劳性能。若残余应力控制不当,将导致齿轮在使用过程中过早发生疲劳失效,产生齿面疲劳点蚀和根部疲劳断裂等问题。针对重型车辆螺旋伞齿轮设计磨削试验,研究不同磨削参数下螺旋伞齿轮残余应力的分布规律;结合磨削前后齿轮残余应力的状态,获得实际磨削过程残余应力;基于力热耦合有限元仿真法计算螺旋伞齿轮磨削残余应力。研究结果表明:齿轮凸面平行磨削方向残余压应力最小,磨削过程使齿面产生拉应力而亚表层产生压应力,力热耦合有限元仿真法能有效用于螺旋伞齿轮磨削残余应力的预测和分析。  相似文献   

15.
利用切齿啮合过程中得到的实际包络的双圆弧弧齿锥齿轮齿面方程,通过三维CAD软件绘制了双圆弧弧齿锥齿轮的实际加工齿面,进而通过此曲面得到了实际加工后的双圆弧弧齿锥齿轮轮齿的三维实体模型。利用CAD软件与有限元分析软件的接口,将所建立轮齿的实体模型导入有限元分析软件,对其进行网格划分。最后对得到的有限元模型施加三组载荷,进行了双圆弧弧齿锥齿轮齿根弯曲应力的有限元分析计算。  相似文献   

16.
弧齿锥齿轮固有振动特性分析   总被引:1,自引:0,他引:1  
弧齿锥齿轮主要用于高速、重载的场合,有可能在额定转速内发生强烈的共振,振动应力急剧增大,致使齿轮过早引起疲劳破坏.运用APDL语言自主开发的弧齿锥齿轮建模程序建立了包含齿轮完整结构的有限元模型,计算了不同腹板厚度下的五个弧齿锥齿轮的固有特性,归纳了几种基本齿轮低阶振型种类.结果表明随腹板厚度的增加弧齿锥齿轮的固有频率有所增大,对变形和振动应力的影响效果则与振型有关.  相似文献   

17.
弧齿锥齿轮热摩擦学行为研究的几个方面   总被引:2,自引:0,他引:2  
论述了弧齿锥齿轮热摩擦学行为研究中涉及的四方面重要内容(热接触分析、传 热计算、温度场分析及热变形等),提出了分析方法,建立了各分析模型,为弧齿锥齿 轮热分析计算提供了理论依据。  相似文献   

18.
20CrMnTi合金渗碳钢作为ZL50装载机驱动桥螺旋锥齿轮的主要材料,通过考察螺旋锥齿轮的设计参数、产品技术要求、热处理工艺以及1000 h的满负荷试验,分析螺旋锥齿轮断齿原因和明确了齿轮断齿因素。结果表明:齿轮氧含量超标、心部硬度和有效硬化层深度偏低是螺旋锥齿轮断齿的主要因素;增大齿轮齿根圆角半径和轮齿压力角,可提高齿轮齿根弯曲强度;齿轮表面采用强力喷丸处理可增加齿轮表面的接触应力,从而进一步提高齿轮的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号