首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biobased composites were manufactured with a compression‐molding technique. Novel thermoset resins from soybean oil were used as a matrix, and flax fibers were used as reinforcements. The air‐laid fibers were stacked randomly, the woven fabrics were stacked crosswise (0/90°), and impregnation was performed manually. The fiber/resin ratio was 60 : 40. The prepared biobased composites were characterized by impact and flexural testing. Scanning electron microscopy of knife‐cut cross sections of the specimens was also done to investigate the fiber–matrix interface. Thermogravimetric analysis of the composites was carried out to provide indications of thermal stability. Three resins from soybean oil [methacrylated soybean oil, methacrylic anhydride modified soybean oil (MMSO), and acetic anhydride modified soybean oil] were used as matrices. The impact strength of the composites with MMSO resin reinforced with air‐laid flax fibers was 24 kJ/m2, whereas that of the MMSO resin reinforced with woven flax fabric was between 24 and 29 kJ/m2. The flexural strength of the MMSO resin reinforced with air‐laid flax fibers was between 83 and 118 MPa, and the flexural modulus was between 4 and 6 GPa, whereas the flexural strength of the MMSO resin reinforced with woven fabric was between 90 and 110 MPa, and the flexural modulus was between 4.87 and 6.1 GPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Flax fiber‐reinforced polylactic acid (PLA) biocomposites were made using a new technique incorporating an air‐laying nonwoven process. Flax and PLA fibers were blended and converted to fiber webs in the air‐laying process. Composite prepregs were then made from the fiber webs. The prepregs were finally converted to composites by compression molding. The relationship between the main process variables and the properties of the biocomposite was investigated. It was found that with increasing flax content, the mechanical properties increased. The maximum tensile strength of 80.3 MPa, flexural strength of 138.5 MPa, tensile modulus of 9.9 GPa and flexural modulus of 7.9 GPa were achieved. As the molding temperature and molding time increased, the mechanical properties decreased. The thermal and morphological properties of the biocomposites were also studied. The appropriate processing parameters for the biocomposites were established for different fiber contents. POLYM. COMPOS., 34:1611–1619, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
A furan/epoxy blend applicable to composite manufacture was studied and corresponding basalt fiber‐reinforced composites were prepared. The processability, mechanical properties, and reasons for the improved mechanical properties of this blend were investigated by rheology machine, mechanical testing machine, and scanning electron microscopy. With excellent processability, furan/epoxy was suitable for manufacturing composites. Furan/epoxy with the ratio of 5/5 showed the best properties, and the impact strength, flexural strength and flexural modulus were 15.43 kJ/m2, 102.81 MPa, and 3209.40 MPa, respectively. The river‐like fracture surface of the furan/epoxy system was well consistent with the mechanical properties. The mechanical and anti‐corrosive properties of basalt fiber‐reinforced furan/epoxy composites were also studied. The mechanical properties of composites changed the same as those of furan/epoxy matrix did. Furan resin effectively improved the anti‐acid but not anti‐alkali property of composites, probably because furan could be cured in acidic condition and basalt fiber was resistant to acid and alkali. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44799.  相似文献   

4.
Oxide (Nextel? 440) fiber‐reinforced silica composites, with the density and porosity of 1.97 g/cm3 and 21.8%, were prepared through sol‐gel. Their average flexure strength, elastic modulus, shear strength, and fracture toughness at room temperature were 119.7 MPa, 25.6 GPa, 10.8 MPa, and 4.0 MPa·m1/2, respectively. The composites showed typical toughened fracture behavior, and distinct pullout fibers were observed at the fracture surface. Their mechanical properties were performant up to 1000°C, with the maximum flexural strength of 132.2 MPa at 900°C. Moreover, the composites showed good thermal stability, even after thermal aging and thermal shock at elevated temperatures.  相似文献   

5.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

6.
This article reports the mechanical and thermal properties of poly(butylene succinate) (PBS) biocomposites reinforced with industrially available waste silk fibers, fabricated with varying fiber contents and lengths. The result indicates that use of waste silk fibers may be a potential as reinforcement for effectively improving the static and dynamic mechanical properties of a biodegradable polymer matrix resin, depending on the waste silk fiber content and length in the present biocomposite system. The “as‐separated” waste silk/PBS biocomposites showed the maximum tensile and flexural properties at a fiber loading of 40 wt %, and the “chopped” waste silk/PBS biocomposites showed the optimal strength and modulus with waste silk fibers of 12.7 mm length. The chopped waste silk fibers play a more contributing role in improving the mechanical properties of waste silk/PBS biocomposites than the as‐separated waste silk fibers at a fixed fiber loading. Above the glass transition temperature, the storage modulus of waste silk/PBS biocomposites was significantly greater than that of PBS resin, especially in the higher temperature region. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4972–4980, 2006  相似文献   

7.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

8.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

9.
Composites with good toughness properties were prepared from chemically modified soy epoxy resin and glass fiber without additional petroleum based toughening agent. Chlorinated soy epoxy (CSE) resin was prepared from soybean oil. The CSE was characterised by spectral, and titration method. The prepared CSE was blended with commercial epoxy resin in different ratios and cured at 85°C for 3 h, and post cured at 225°C for 2 h using m‐phenylene diamine (MPDA) as curing agent. The cure temperatures of epoxy/CSE/MPDA with different compositions were found to be in the range of (151.2–187.5°C). The composite laminates were fabricated using epoxy /CSE/MPDA‐glass fiber at different compositions. The mechanical properties such as tensile strength (248–299 MPa), tensile modulus (2.4–3.4 GPa), flexural strength (346–379 MPa), flexural modulus (6.3–7.8 GPa) and impact strength (29.7–34.2) were determined. The impact strength increased with the increase in the CSE content. The interlaminor fracture toughness (GIC) values also increased from 0.6953 KJ/m2 for neat epoxy resin to 0.9514 KJ/m2 for 15%CSE epoxy‐modified system. Thermogravimetric studies reveal that the thermal stability of the neat epoxy resin was decreased by incorporation of CSE. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

11.
M. Ramesh  P. Sudharsan 《SILICON》2018,10(3):747-757
The use of cellulosic fibers as reinforcing materials in polymer composites has gained popularity due to an increasing trend for developing sustainable materials. In the present experimental study, flax and glass fiber reinforced partially eco-friendly hybrid composites are fabricated with two different fiber orientations of 0° and 90°. The mechanical properties of these composites such as tensile, flexural and impact strengths have been evaluated. From the experiments, it has been observed that the composites with the 0° fiber orientation can hold the maximum tensile strength of 82.71 MPa, flexural strength of 143.99 MPa, and impact strength of 4 kJ/m2. Whereas the composites with 90° fiber orientation can withstand the maximum tensile strength of 75.64 MPa, flexural strength of 134.86 MPa, and impact strength of 3.99 kJ/m2. Morphological analysis is carried out to analyze fiber matrix interfaces and the structure of the fractured surfaces by using scanning electron microscopy (SEM). The finite element analysis (FEA) has been carried out to predict the resulting important mechanical properties by using ANSYS 12.0. From the results it is found that the experimental results are very close to the results predicted from FEA model values. It is suggested that these hybrid composites can be used as alternate materials for pure synthetic fiber reinforced polymer composite materials.  相似文献   

12.
Poly(butylene succinate) (PBS) was reinforced by cotton stalk bast fibers (CSBF), which had been pretreated by the continuous steam explosion method. The influence of water content in CSBF during the explosion and fiber content on the mechanical properties of CSBF/PBS biocomposites was investigated. The results showed that the incorporation of CSBF decreased the tensile and impact strength, while significantly enhanced the flexural strength, flexural modulus and tensile modulus. The mechanical properties of biocomposites reinforced by exploded fibers were much better than that of the biocomposites reinforced by non-exploded fibers. Biocomposites reinforced by fibers with 40 and 50 wt% water contents during the explosion had the best mechanical properties. The morphology of CSBF and biocomposites was evaluated by SEM, which demonstrated that fibers with 40 and 50 wt% water contents had better separation and rougher microsurfaces, indicating a better adhesion between PBS matrix and fibers.  相似文献   

13.
A. Ghosh  A. Verma 《Fuel Cells》2014,14(2):259-265
Graphene reinforced carbon‐polymer composite bipolar plate is developed using resole phenol formaldehyde resin, and conductive reinforcements (natural graphite, carbon black, and carbon fiber) using compression molding technique. Graphene is reinforced into the composite to alter various properties of the composite bipolar plate. The developed composite bipolar plate is characterized and the effect of temperature on mechanical and electrical properties is investigated with an overall aim to achieve benchmark given by US‐DOE and Plug Power Inc. The flexural strength and electrical conductivity of the composites was almost stable with the increase in temperature upto 175 °C. The composite bipolar plate maintained high in‐plane and through‐plane electrical conductivities, which is about 409.23 and 98 S cm–1, respectively, at 175 °C. The flexural strength and shore hardness of the developed composite was around 56.42 MPa and 60, respectively, at 175 °C, and on further increase in the temperature the mechanical strengths deceases sharply. The electrical and mechanical properties of the composite bipolar plates are within the US‐DoE target. However, the various properties of the composite bipolar plate could not be sustained above 175 °C.  相似文献   

14.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
The use of interleaved polyethylene terephthalate (PET) veils to increase the interlaminar fracture toughness of glass fiber‐reinforced, low‐styrene emission, unsaturated polyester resin composites, was investigated. PET, being chemically similar to the unsaturated polyester resin, was expected to exhibit good wetting and strong interaction with the matrix. Composite laminates were manufactured by hand lay‐up, with the veil content varying up to 7%. The effects of PET veils on the interlaminar shear strength, flexural strength, flexural modulus, glass transition temperature, damping parameters, and Mode‐I interlaminar fracture toughness of the composite were studied. The veils were found to enhance most of these properties, with only minor negative effects on flexural stiffness and Tg. The PET/resin bonding did indeed prove to be strong, but the enhancement of fracture toughness was not as much as expected, because of the weaker glass/resin interface providing an alternative crack propagation path. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42877.  相似文献   

16.
The objective of the present work is to develop carbon/carbon (C/C) composite bipolar plate at low cost with rapid processing time by a novel process. Carbon/carbon composite was developed using exfoliated carbon fiber reinforcement, isroaniso as primary matrix precursor, and resole type phenolic resin as secondary matrix precursor. Randomly oriented hybrid carbon fiber (T‐800 and P‐75) reinforced hybrid carbon matrix composite was fabricated. The slicing and channel forming were carried out using simple and conventional machines. The competency of the material was investigated by characterizing and analyzing density, scanning electron miscroscopy (SEM), compressive strength, compressive modulus, flexural strength, tensile strength, impact strength, hardness, electrical conductivity, thermal conductivity, coefficient of thermal expansion, permeability, and corrosion current. The C/C composite bipolar plate with exfoliated carbon fibers offered bulk density 1.75 g cm−3, tensile strength 45 MPa, flexural strength 98 MPa, compressive strength 205 MPa, electrical conductivity 190 (through‐plane) and 595 S cm−1 (in‐plane), and thermal conductivity 24 (through‐plane) and 51 W m−1 K−1 (in‐plane). Further, single cell test was performed to evaluate the effectiveness of the C/C composite bipolar plate in the PEM fuel cell and the performance was compared with the commercial graphite bipolar plate at different operating temperatures.  相似文献   

17.
A mechanically flexible mat consisting of structurally amorphous SiO2 (glass) nanofibers was first prepared by electrospinning followed by pyrolysis under optimized conditions and procedures. Thereafter, two types of hybrid multi‐scale epoxy composites were fabricated via the technique of vacuum assisted resin transfer molding. For the first type of composites, six layers of conventional glass microfiber (GF) fabrics were infused with the epoxy resin containing shortened electrospun glass nanofibers (S‐EGNFs). For the second type of composites, five layers of electrospun glass nanofiber mats (EGNF‐mats) were sandwiched between six layers of conventional GF fabrics followed by the infusion of neat epoxy resin. For comparison, the (conventional) epoxy composites with six layers of GF fabrics alone were also fabricated as the control sample. Incorporation of EGNFs (i.e., S‐EGNFs and EGNF‐mats) into GF/epoxy composites led to significant improvements in mechanical properties, while the EGNF‐mats outperformed S‐EGNFs in the reinforcement of resin‐rich interlaminar regions. The composites reinforced with EGNF‐mats exhibited the highest mechanical properties overall; specifically, the impact absorption energy, interlaminar shear strength, flexural strength, flexural modulus, and work of fracture were (1097.3 ± 48.5) J/m, (42.2 ± 1.4) MPa, (387.1 ± 9.9) MPa, (12.9 ± 1.3) GPa, and (30.6 ± 1.8) kJ/m2, corresponding to increases of 34.6%, 104.8%, 65.4%, 33.0%, and 56.1% compared to the control sample. This study suggests that EGNFs (particularly flexible EGNF‐mats) would be an innovative type of nanoscale reinforcement for the development of high‐performance structural composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42731.  相似文献   

18.
Triglyceride oils derived from plants have been used to synthesize several different monomers for use in structural applications. These monomers have been found to form polymers with a wide range of physical properties. They exhibit tensile moduli in the 1–2 GPa range and glass transition temperatures in the range 70–120 °C, depending on the particular monomer and the resin composition. Composite materials were manufactured utilizing these resins and produced a variety of durable and strong materials. At low glass fiber content (35 wt %), composites produced from acrylated epoxidized soybean oil by resin transfer molding displayed a tensile modulus of 5.2 GPa, a flexural modulus of 9 GPa, a tensile strength of 129 MPa, and flexural strength of 206 MPa. At higher fiber contents (50 wt %) composites produced from acrylated epoxidized soybean oil displayed tensile and compression moduli of 24.8 GPa each, and tensile and compressive strengths of 463.2 and 302.6 MPa, respectively. In addition to glass fibers, natural fibers such as flax and hemp were used. Hemp composites of 20% fiber content displayed a tensile strength of 35 MPa and a tensile modulus of 4.4 GPa. The flexural modulus was ∼2.6 GPa and the flexural strength was in the range 35.7–51.3 MPa, depending on the test conditions. The flax composite materials had tensile and flexural strengths in the ranges 20–30 and 45–65 MPa, respectively. The properties exhibited by both the natural- and synthetic fiber-reinforced composites can be combined through the production of “hybrid” composites. These materials combine the low cost of natural fibers with the high performance of synthetic fibers. Their properties lie between those displayed by the all-glass and all-natural composites. Characterization of the polymer properties also presents opportunities for improvement through genetic engineering technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 703–723, 2001  相似文献   

19.
This study explores the viability of fiberglass‐geopolymer composites as an intermediate temperature structural ceramic composite. E‐glass fibers are cheap, readily available, resistant to heat, electricity and chemical attack. Geopolymers are refractory and can be processed at room temperature. However, pure geopolymers have low tensile strength and fracture toughness, as is typical of ceramics. In this work, tensile and flexure properties of metakaolin‐based sodium and potassium geopolymers reinforced with E‐glass leno weaves were measured and the data was analyzed by Weibull statistics. The average tensile and flexural strengths for sodium geopolymer reinforced with E‐glass leno weaves were 39.3 ± 7.2 MPa and 25.6 ± 4.8 MPa, respectively. For potassium geopolymer reinforced with E‐glass leno weaves, the average tensile and flexural strengths were 40.7 ± 9.9 MPa and 15.9 ± 4.0 MPa, respectively. The composites were heat treated for one hour at two temperatures, 300°C and 550°C and their flexure properties were studied at room temperatures. The average flexural strengths for sodium geopolymer reinforced with E‐glass leno weaves were reduced to 6.6 ± 1.0 MPa after heat treatment at 300°C, and 1.2 ± 0.3 MPa after heat treatment at 550°C, respectively. For potassium geopolymer reinforced with E‐glass leno weaves, the average flexural strengths were 6.1 ± 1.5 MPa and 1.3 ± 0.3 MPa after heat treatment at 300°C and 550°C, respectively. SEM and EDS were performed to observe the fiber‐matrix interface. XRD was done to check if the geopolymer was amorphous as expected.  相似文献   

20.
Flax fiber was modified through grafting of binary vinyl monomers mixtures such as methyl methacrylate (MMA)/vinyl acetate (VA), MMA/acrylamide (AAm), and MMA/styrene (Sty) under the influence of microwave radiations. 24.64% grafting was found at 210 W microwave power under optimum reaction conditions. Graft copolymers obtained were characterized with FTIR spectroscopy, scanning electron microscopy, and TGA/DTA techniques. Graft copolymers were found to be moisture retardant with better tensile strength. Phenolic composites using graft copolymers vis‐à‐vis flax as reinforcing material were subjected for the evaluation of different mechanical properties such as wear resistance, tensile strength, compressive strength, modulus of rupture (MOR), modulus of elasticity (MOE), and stress at the limit of proportionality (SP). Composites reinforced with graft copolymers showed better mechanical properties in comparison to composites reinforced with flax. Phenolic composites reinforced with Flax‐g‐poly(MMA/Sty) showed maximum wear resistance followed by reinforcement with flax, Flax‐g‐poly (MMA/AAm), and Flax‐g‐poly(MMA/VA). Composites reinforced with Flax‐g‐poly(MMA/Sty) and flax fibers have been found to show 150 N tensile strength with extension of 3.94 and 2.17 mm, respectively. It has also been found that composites reinforced with Flax‐g‐poly(MMA/Sty) showed maximum compressive strength (1,000 N) with compression of 3.71 mm in comparison to other graft copolymers and flax fibers reinforcement. Reinforcement of phenolic resin with Flax‐g‐poly(MMA/Sty) and flax fibers could improve the MOR and MOE. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号