首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.  相似文献   

2.
The antimicrobial potential of switchgrass extractives (SE) was evaluated on cut lettuce leaves and romaine lettuce in planta, using rifampicin-resistant Escherichia coli O157:H7 and Salmonella Typhimurium strain LT2 as model pathogens. Cut lettuce leaves were swabbed with E. coli O157:H7 or S. Typhimurium followed by surface treatment with 0.8% SE, 0.6% sodium hypochlorite, or water for 1 to 45 min. For in planta studies, SE was swabbed on demarcated leaf surfaces either prior to or after inoculation of greenhouse-grown lettuce with E. coli O157:H7 or S. Typhimurium; the leaf samples were collected after 0, 24, and 48 h of treatment. Bacteria from inoculated leaves were enumerated on tryptic soy agar plates (and also on MacConkey's and XLT4 agar plates), and the recovered counts were statistically analyzed. Cut lettuce leaves showed E. coli O157:H7 reduction between 3.25 and 6.17 log CFU/leaf, whereas S. Typhimurium reductions were between 2.94 log CFU/leaf and 5.47 log CFU/leaf depending on the SE treatment durations, from initial levels of ∼7 log CFU/leaf. SE treatment of lettuce in planta, before bacterial inoculation, reduced E. coli O157:H7 and S. Typhimurium populations by 1.88 and 2.49 log CFU after 24 h and 3 h, respectively. However, SE treatment after bacterial inoculation of lettuce plants decreased E. coli O157:H7 populations by 3.04 log CFU (after 0 h) with negligible reduction of S. Typhimurium populations. Our findings demonstrate the potential of SE as a plant-based method for decontaminating E. coli O157:H7 on lettuce during pre- and postharvest stages in hurdle approaches.  相似文献   

3.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

4.
H. Yang    Y. Cheng    B.L. Swem    Y. Li 《Journal of food science》2003,68(3):1008-1012
Fresh‐cut lettuce inoculated with Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 was treated using cetylpyridinium chlorine (CPC) solution in a laboratory‐scale immersion spray system. With 0.7 kg/cm2 spray pressure and 1.5‐min spray time (ST), both bacteria were significantly reduced (P < 0.05) in 0.1% to 0.3% CPC spray treatments, compared with water spray controls. At the same ST, increasing spray pressure from 0.7 to 2.1 kg/cm2 further reduced bacteria by 0.5 to 1.5 log colony‐forming units (CFU)/g. The 0.2% and 0.3% CPC treatments resulted in the greatest reduction of S. serovar Typhimurium and E. coli O157:H7, respectively. Similar bacterial reduction could be achieved using shorter ST with extended post‐spray exposure time. No color change on the lettuce was observed after CPC treatment.  相似文献   

5.
This study was performed to compare the effectiveness of individual treatments (ultrasound and organic acids) and their combination on reducing foodborne pathogens on organic fresh lettuce. Lettuce leaves were inoculated with a cocktail of three strains each of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated with ultrasound (40 kHz) alone, organic acids (0.3, 0.5, 0.7, 1.0, and 2.0% — malic acid, lactic acid, and citric acid) alone and combined with ultrasound and organic acids for 5 min. For all 3 pathogens, the combined treatment of ultrasound and organic acids resulted in additional 0.8 to 1.0 log reduction compared to individual treatments, without causing significant quality change (color and texture) on lettuce during 7 day storage. The maximum reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes were 2.75, 3.18, and 2.87 log CFU/g observed after combined treatment with ultrasound and 2% organic acid for 5 min, respectively. Our results suggest that the combined treatment of ultrasound with organic acids was effective at increasing pathogen reduction compared to individual treatments without significantly affecting quality, and demonstrates its potential as a novel method to increase the microbial safety on organic fresh lettuce.  相似文献   

6.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

7.
Chlorine dioxide (ClO2), ozone, and thyme essential oil has been found to be effective in reducing pathogens, including Escherichia coli O157:H7, on selected produce. The efficacy of these sanitizers was evaluated, alone or through their sequential washing to achieve a 3 or more log reduction of mixed strains of E. coli O157:H7 on shredded lettuce and baby carrots. Samples sprinkle inoculated with mixed strains of E. coli O157:H7 were air-dried for 1 h at 22±2°C in a biosafety cabinet, stored at 4°C for 24 h, and then treated with different concentrations of disinfectants and exposure time. Sterile deionized water washing resulted in approximately 1log reduction ofE. coli O157:H7 after 10 min washing of lettuce and baby carrots. Gaseous treatments resulted in higher log reductions in comparison to aqueous washing. However, decolorization of lettuce leaves was observed during long exposure time. A logarithmic reduction of 1.48-1.97log10 cfu/g was obtained using aqueous ClO2 (10.0 mg/L for 10 min) ozonated water (9.7 mg/L for 10 min) or thyme oil suspension (1.0 mL/L for 5 min) on lettuce and baby carrots. Of the three sequential washing treatments used in this study, thyme oil followed by aqueous ClO2/ozonated water, or ozonated water/aqueous ClO2 were significantly (P<0.05) more effective in reducing E. coli O157:H7 (3.75 and 3.99log, and 3.83 and 4.34 log reduction) on lettuce and baby carrots, respectively. The results obtained from this study indicate that sequential washing treatments could achieve 3-4log reduction of E. coli O157:H7 on shredded lettuce and baby carrots.  相似文献   

8.
In the present study, inhibitory effects of the hydrosols of thyme, black cumin, sage, rosemary and bay leaf were investigated against Salmonella Typhimurium and Escherichia coli O157:H7 inoculated to apple and carrots (at the ratio of 5.81 and 5.81 log cfu/g for S. Typhimurium, and 5.90 and 5.70 log cfu/g for E. coli O157:H7 on to apple and carrot, respectively). After the inoculation of S. Typhimurium or E. coli O157:H7, shredded apple and carrot samples were washed with the hydrosols and sterile tap water (as control) for 0, 20, 40 and 60 min. While the sterile tap water was ineffective in reducing (P > 0.05) S. Typhimurium and E. coli O157:H7, 20 min hydrosol treatment caused a significant (P < 0.05) reduction compared to the control group. On the other hand, thyme and rosemary hydrosol treatments for 20 min produced a reduction of 1.42 and 1.33 log cfu/g respectively in the E. coli O157:H7 population on apples. Additional reductions were not always observed with increasing treatment time. Moreover, thyme hydrosol showed the highest antibacterial effect on both S. Typhimurium and E. coli O157:H7 counts. Inhibitory effect of thyme hydrosol on S. Typhimurium was higher than that for E. coli O157:H7. Bay leaf hydrosol treatments for 60 min reduced significantly (P < 0.05) E. coli O157:H7 population on apple and carrot samples. In conclusion, it was shown that plant hydrosols, especially thyme hydrosol, could be used as a convenient sanitizing agent during the washing of fresh-cut fruits and vegetables.  相似文献   

9.
Impact of drip and overhead sprinkler irrigation on the persistence of attenuated Escherichia coli O157:H7 in the lettuce phyllosphere was investigated using a split-plot design in four field trials conducted in the Salinas Valley, California, between summer 2007 and fall 2009. Rifampicin-resistant attenuated E. coli O157:H7 ATCC 700728 (BLS1) was inoculated onto the soil beds after seeding with a backpack sprayer or onto 2- or 4-week-old lettuce plant foliage with a spray bottle at a level of 7 log CFU ml−1. When E. coli O157:H7 was inoculated onto 2-week-old plants, the organism was recovered by enrichment in 1 of 120 or 0 of 240 plants at 21 or 28 days post-inoculation, respectively. For the four trials where inoculum was applied to 4-week-old plants, the population size of E. coli O157:H7 declined rapidly and by day 7, counts were near or below the limit of detection (10 cells per plant) for 82% or more of the samples. However, in 3 out 4 field trials E. coli O157:H7 was still detected in lettuce plants by enrichment 4-weeks post-inoculation. Neither drip nor overhead sprinkler irrigation consistently influenced the survival of E. coli O157:H7 on lettuce.  相似文献   

10.
The objectives of this study were to evaluate the efficacy of erythrosine B (ERY, Red No. 3)-mediated photodynamic therapy (PDT) for inactivating Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in tomato juice. The inoculated tomato juice was subjected to xenon light (E − L+), ERY (E + L−), or xenon light and ERY combination (E + L+) treatments. Treatment with E + L+ for 15 min decreased the cell counts of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 6.77, 2.74, and 6.43 log CFU/mL, respectively, without generating sublethally injured cells. The cell count reductions of E. coli O157:H7 and L. monocytogenes in the E + L+ treatment group were higher than the sum of cell count reductions in the E − L+ and E + L− treatment groups, which indicated the synergistic activity of the treatment combination. The T3d and T5d values calculated by the Weibull model indicated that S. Typhimurium exhibited higher resistance to the E + L+ treatment than the other two pathogens. Compared with control group, the E + L+ treatment group exhibited higher lycopene content and a* (red) value, whereas the pH value and sensory attributes were not significantly (p > .05) altered. These results suggest that ERY-mediated PDT can be potentially applied to control foodborne pathogens in tomato juice products without negatively affecting the product quality.  相似文献   

11.
Abstract: We conducted this study to investigate the survival and growth of pathogens on fresh vegetables stored at 4 and 15 °C. Vegetables (romaine lettuce, iceberg lettuce, perilla leaves, and sprouts) were inoculated with 4 pathogens (Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157:H7) and stored at 2 different temperatures for different periods of time (3, 6, 9, 12, and 15 d at 4 °C and 1, 2, 3, 5, and 7 d at 15 °C). Populations of the 4 pathogens tended to increase on all vegetables stored at 15 °C for 7 d. Populations of E. coli O157:H7 and S. Typhimurium increased significantly, by approximately 2 log10CFU/g, on loose and head lettuce stored at 15 °C for 1 d. No significant differences were observed in the growth of different pathogens on vegetables stored at 4 °C for 15 d. E. coli O157:H7 did not survive on sprouts stored at 15 or 4 °C. The survival and growth of food pathogens on fresh vegetables were very different depending on the pathogen type and storage temperature. Practical Application: Survivals and growth of pathogens on various vegetables at 4 and 15 °C were observed in this study. Survivals and growth of pathogens on vegetables were different depending on the pathogen type and storage temperature. Therefore, vegetables should be stored under refrigerated conditions (below 4 °C) prior to consumption. This recommendation may vary depending on the type of vegetable.  相似文献   

12.
Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3‐strain mixture of E. coli O157:H7 at 102 or 104 CFU/g. The contaminated lettuce and un‐inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.  相似文献   

13.
The antimicrobial effects of apple-, carrot-, and hibiscus-based edible films containing carvacrol and cinnamaldehyde against Escherichia coli O157:H7 on organic leafy greens in sealed plastic bags were investigated. Fresh-cut Romaine and Iceberg lettuce, and mature and baby spinach leaves were inoculated with E. coli O157:H7 and placed into Ziploc® bags. Edible films were then added to the bags, which were stored at 4°C. The evaluation of samples taken at days 0, 3, and 7 showed that on all leafy greens, 3% carvacrol-containing films had the greatest effect against E. coli O157:H7, reducing the bacterial population by about 5 log CFU/g on day 0. All three types of 3% carvacrol-containing films reduced E. coli O157:H7 by about 5 log CFU/g at day 0. The 1.5% carvacrol-containing films reduced E. coli O157:H7 by 1–4 logs CFU/g at day 7. Films with 3% cinnamaldehyde showed reduction of 0.6–3 logs CFU/g on different leafy greens.  相似文献   

14.
The fate of Listeria monocytogenes, Salmonella Typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on teewurst, a traditional raw and spreadable sausage of Germanic origin. Multi-strain cocktails of each pathogen (ca. 5.0 log CFU/g) were used to separately inoculate teewurst that was subsequently stored at 1.5, 4, 10, and 21 °C. When inoculated into commercially-prepared batter just prior to stuffing, in general, the higher the storage temperature, the greater the lethality. Depending on the storage temperature, pathogen levels in the batter decreased by 2.3 to 3.4, ca. 3.8, and 2.2 to 3.6 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, during storage for 30 days. When inoculated onto both the top and bottom faces of sliced commercially-prepared finished product, the results for all four temperatures showed a decrease of 0.9 to 1.4, 1.4 to 1.8, and 2.2 to 3.0 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, over the course of 21 days. With the possible exceptions for salt and carbohydrate levels, chemical analyses of teewurst purchased from five commercial manufacturers revealed only subtle differences in proximate composition for this product type. Our data establish that teewurst does not provide a favourable environment for the survival of E. coli O157:H7, S. Typhimurium, or L. monocytogenes inoculated either into or onto the product.  相似文献   

15.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

16.
The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross‐section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products.  相似文献   

17.
Whey protein isolate (WPI) films (pH 5.2) containing 0.5 to 1.0% p‐aminobenzoic acid (PABA) and/or sorbic acid (SA) were assessed for antimicrobial and mechanical properties while in contact with sliced bologna and summer sausage that were inoculated with Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica subsp. enterica serovar Typhimurium DT104. WPI films containing SA or PABA decreased L. monocytogenes, E. coli, and S. Typhimurium populations by 3.4 to 4.1,3.1 to 3.6, and 3.1 to 4.1 logs, respectively, on both products after 21 d at 4 °C. Background flora was inhibited compared with controls. Film tensile strength decreased while % elongation remained unchanged following 72 h of product contact.  相似文献   

18.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

19.
Quality assurance is one of the fundamental ways of preventing infections from foodborne pathogens such as Escherichia coli O157:H7, which produces a deadly toxin. Simple, rapid, and accurate methods for the detection of foodborne pathogens are necessary for healthcare management. In the present study, we applied our microfluidic device, which uses a fluorescent staining-based detection system, to enumerate E. coli O157:H7 cells in lettuce and beef samples. E. coli O157:H7 cells spiked into lettuce or beef samples were collected using a 0.2-μm-pore-sized filter or a two-step centrifugation process. The recovery ratios of inoculated E. coli O157:H7 cells from the lettuce and beef samples counted using fluorescence microscopy were 84 (± 10)% and 90 (± 7.3)%, respectively. The counts of E. coli O157:H7 inoculated into lettuce and beef obtained using the microfluidic system were close to the counts obtained using fluorescence microscopy. Our microfluidic approach offers a semi-automated platform for the quantitative detection of microbial cells from complex food samples and facilitates quantification of microbes in food and food production lines within 1 hr.  相似文献   

20.
A study of the effect of pulsed electric fields (PEF) on the kinetics of inactivation and the occurrence of cell damage in Escherichia coli O157:H7 and Salmonella Typhimurium 878 treated in McIlvaine buffer covering a range from pH 3.5 to 7.0 was conducted. Mathematical equations based on the Weibull distribution were developed to describe the influence of the electric field strength, treatment time and pH of the treatment medium on the lethality and generation of cell damage of both Gram negative pathogenic bacteria after the application of PEF treatments. E. coli O157:H7 was more PEF resistant than Salmonella Typhimurium at all pH investigated. PEF resistance of E. coli was influenced by the pH but the pH hardly affected the PEF resistance of Salmonella Typhimurium 878. After 150 μs at 35 kV/cm, 1 and 5 log10 cycles of inactivation of E. coli O157:H7 were observed in the range of pH 3.5–4.5 and 5.5–6.5, respectively. Cell damage increased with the field strength and treatment time. A maximum cell damage level of 4.2 and 2.7 log10 cycles for E. coli O157:H7 and Salmonella Typhimurium was observed respectively after a treatment of 30 kV/cm at pH 3.5. PEF induced cell damage was not detected at pH higher than 5.0 for both microorganisms. The developed equations can be applied to design combining processes which can increase the lethality of PEF or to reduce the intensity of PEF treatments to achieve a determine level of microbial inactivation.Industrial relevanceThis study demonstrates that when the influence of several factors on the microbial behavior is investigated, the development of mathematical models is a very useful tool to evaluate the influence of each parameter and their interactions. In this study, it has been mathematically described for first time the influence of the pH of the treatment medium and the occurrence of sublethal injury in a wide range of electric field strengths and treatment times in two Gram negative pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium 878. These models would also be of interest for engineering design, evaluation and optimization of PEF process as a new technique for food preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号