首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.  相似文献   

2.
Studies of ERS-1 synthetic aperture radar (SAR) imagery have shown that fire scars in Alaskan forests are significantly brighter (3–6 dB) than surrounding unburned forest. The signature varies seasonally and changes as vegetation re-establishes on the site over longer time periods (>5years). Additionally, it is known that soil water content typically increases following forest fires due to changes in evapotranspiration rates and melting of the permafrost.

The objective of this study was to understand the relation between soil water content and the ERS-1 SAR signature at fire-disturbed sites. To accomplish this objective, we compared soil water in six burned black spruce (Picea mariana (Mill.) B.S.P.) forest sites in interior Alaska to ERS-1 SAR backscalter measurements. The six sites are of various age since burn. Soil water was periodically measured at each site during the summer of 1992 and at one site in 1993 and 1994 when the ERS-1 imaging radar was scheduled to pass overhead. Results indicate that a positive linear relation exists between soil water content and the SAR backscatter coefficient in young burns ( < ~4years). Older burns do not show this relation, a result of vegetation establishment following the burn. This interaction between soil moisture condition and ERS-1 SAR backscatter shows great potential for measuring soil water content and monitoring seasonal variations in soil water content in black spruce sites recently disturbed by wildfire.  相似文献   

3.
Multitemporal ERS-1 and ERS-2 SAR data were acquired for northern Jordan between 1995 and 1997 to investigate changes in the backscatter coefficients of a range of typical desert land surfaces. The changes in backscatter found were ascribed to variations in surface soil moisture, and changes in surface roughness caused by a range of natural and anthropogenic factors. Data collected from monitored sites were input into the Integral Equation Model (IEM). The model outputs were strongly correlated with observed backscatter coefficients (r 2=0.84). The results show that the successful monitoring of soil moisture in these environments is strongly dependent on the surface roughness. On surfaces with RMS height 0.5 cm, the sensitivity of the backscatter coefficient to changes in surface microtopography did not allow accurate soil moisture estimation. Microtopographic change on rougher surfaces has less influence on the backscatter coefficient, and the probability of soil moisture estimation from SAR imagery is greater. These results indicate that knowledge of the surface conditions (both in terms of surface roughness and geomorphology) is essential for accurate soil moisture monitoring, whether in a research or operational context. The potential benefits of these findings are discussed in the context of the Jordan Badia Research and Development Project.  相似文献   

4.
Relationships between ERS-2 SAR backscatter and the biophysical properties of four Mediterranean vegetation formations (forest, shrubs, dwarf shrubs and herbaceous vegetation) were assessed. Low correlation was found between ERS-2 SAR backscatter and both aboveground biomass and LAI. However, significantly higher correlation (r =0.92) was found between ERS-2 SAR backscatter and a new index of Green leaf biomass Volumetric Density (GVD). These results stress the dominant influence of leaves in the uppermost part of the vegetation layer on ERS-2 SAR backscatter.  相似文献   

5.
Data from 202 forest plots on the Roanoke River floodplain, North Carolina were used to assess the capabilities of multitemporal radar imagery for estimating biophysical characteristics of forested wetlands. The research was designed to determine the potential for using widely available data from the current set of satellite-borne synthetic aperture radar (SAR) sensors to study forests over broad geographic areas and complex environmental gradients. The SAR data set included 11 Radarsat scenes, 2 ERS-1 images, and 1 JERS-1 scene. Empirical analyses were stratified by flood status such that sites were compared only if they exhibited common flooding characteristics. In general, the results indicate that forest properties are more accurately estimated using data from flooded areas, probably because variations in surface conditions are minimized where there is a continuous surface of standing water. Estimations yielded root mean square errors (RMSEs) for validation data around 10 m2/ha for basal area (BA), and less than 3 m for canopy height. The r2 values generally exceeded .65 for BA, with the best predictions coming from sample sites for which both nonflooded and flooded SAR scenes were available. The addition of early spring normalized difference vegetation index (NDVI) values from Landsat Thematic Mapper (Landsat TM) improved model predictions for BA in forests where BA levels were <55 m2/ha. Further analyses indicated a very limited sensitivity of the individual SAR scenes to differences in forest composition, although soil properties in nonflooded areas exerted a weak but nevertheless important influence on backscatter.  相似文献   

6.
A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized.

Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes are related to wetland classes of conventional vegetation maps, indicating its applicability; 30% of the land area north of the treeline was identified as wetland while conventional maps recorded 1–7%.  相似文献   

7.
This paper presents the results of field testing a radar model which relates leaf area index to radar backscatter for ERS-1 C-band VV polarization SAR data. Ground truth measurements of leaf area index and soil moisture content were made in selected sugar beet fields, with simultaneous acquisition of ERS-1 SAR image data. Radar backscatter coefficients were derived from the calibrated ERS-1 SAR data. The Leeuwen and Clevers expression of the water cloud model was fitted to determine the in situ relationship between radar back-scatter and leaf area index. The model can be inverted analytically to calculate leaf area index from radar backscatter. The results show considerable potential for the operational application of ERS-1 SAR data in crop monitoring.  相似文献   

8.
We conducted a preliminary investigation of the response of ERS C-band SAR backscatter to variations in soil moisture and surface inundation in wetlands of interior Alaska. Data were collected from 5 wetlands over a three-week period in 2007. Results showed a positive correlation between backscatter and soil moisture in sites dominated by herbaceous vegetation cover (r = 0.74, p < 0.04). ERS SAR backscatter was negatively correlated to water depth in all open (non-forested) wetlands when water table levels were more than 6 cm above the wetland surface (r = − 0.82, p < 0.001). There was no relationship between backscatter and soil moisture in the forested (black spruce-dominated) wetland site. Our preliminary results show that ERS SAR data can be used to monitor variations in hydrologic conditions in high northern latitude wetlands (including peatlands), particularly sites with sparse tree cover.  相似文献   

9.
A simplified land surface dryness index (Temperature–Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (Ts) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing interpretations of the Ts/NDVI space, the index is conceptually and computationally straightforward. It is based on satellite derived information only, and the potential for operational application of the index is therefore large. The spatial pattern and temporal evolution in TVDI has been analysed using 37 NOAA-AVHRR images from 1990 covering part of the Ferlo region of northern, semiarid Senegal in West Africa. The spatial pattern in TVDI has been compared with simulations of soil moisture from a distributed hydrological model based on the MIKE SHE code. The spatial variation in TVDI reflects the variation in moisture on a finer scale than can be derived from the hydrological model in this case.  相似文献   

10.
Radarsat-2 imagery from extreme dry versus wet conditions are compared in an effort to determine the value of using polarimetric synthetic aperture radar (SAR) data for improving estimation of fuel moisture in a chronosequence of Alaskan boreal black spruce ecosystems (recent burns, regenerating forests dominated by shrubs, open canopied forests, moderately dense forest cover). Results show strong distinction between wet and dry conditions for C-HH and C-LR polarized backscatter, and Freeman–Durden and van Zyl surface bounce decomposition parameters (35–65% change for all but the dense spruce site). These four SAR variables have high potential for evaluation of within site surface soil moisture, as well as for relative distinction between wet and dry conditions across sites for lower biomass and sparse canopy forested sites. However, for any given test site except the shrubby regrowth site, van Zyl volume, surface, and double bounce scattering all result in similar percentage increases from dry to wet soil condition. This indicates that for most of these test sites/cases moisture enhances the magnitude of the return for all scattering mechanisms evaluated. Thus, differences in scattering from the interaction of biomass, surface roughness, and moisture condition across sites remains an issue and backscatter due to surface roughness or biomass cannot be uniquely estimated. In contrast, the Cloude–Pottier C-band decomposition variables appear invariant to soil moisture, but may instead account for variations in ecosystem structure and biomass. Further investigation is needed, as results warrant future research focused on evaluation of multiple polarimetric parameters in algorithm development.  相似文献   

11.
The aim of this study was to estimate soil moisture from RADARSAT-2 Synthetic Aperture Radar (SAR) images acquired over agricultural fields. The adopted approach is based on the combination of semi-empirical backscattering models, four RADARSAT-2 images and coincident ground measurements (soil moisture, soil surface roughness and vegetation characteristics) obtained near Saskatoon, Saskatchewan, Canada during the summer of 2008. The depolarization ratio (χv), the co-polarized correlation coefficient (ρvvhh) and the ratio of the absolute value of cross polarization to crop height (Λvh) derived from RADARSAT-2 data were analyzed with respect to changes in soil surface roughness, crop height, soil moisture and vegetation water content. This sensitivity analysis allowed us to develop empirical relationships for soil surface roughness, crop height and crop water content estimation regardless of crop type. The latter were then used to correct the semi-empirical Water-Cloud model for soil surface roughness and vegetation effects in order to retrieve soil moisture data. The soil moisture retrieved algorithm is evaluated over mature crop fields (wheat, pea, lentil, and canola) using ground measurements. Results show average relative errors of 19%, 10%, 25.5% and 32% respectively for the retrieval of crop height, soil surface roughness, crop water content and soil moisture.  相似文献   

12.
The study presented here focuses on using a spaceborne imaging radar, ERS-1, for mapping and estimating areal extent of fires which occurred in the interior region of Alaska. Fire scars are typically 3 to 6 dB brighter than adjacent unburned forests in the ERS-1 imagery. The enhanced backscatter from burned areas was found to be a result of high soil moisture and exposed rough ground surfaces. Fire scars from 1979 to 1992 are viewed in seasonal ERS-1 synthetic aperture radar (SAR) data obtained from 1991 to 1994. Three circumstances which influence the detectability of fire scars in the ERS-1 imagery are identified and examined; seasonality of fire scar appearances, fires occurring in mountainous regions, and fires occurring in wetland areas. Area estimates of the burned regions in the ERS-1 imagery are calculated through the use of a Geographic Information System (GIS) database. The results of this analysis are compared to fire records maintained by the Alaska Fire Service (AFS) and to estimates obtained through a similar study using the Advanced Very High Resolution Radiometer (AVHRR) sensor.  相似文献   

13.
This paper discusses the effects of vegetation on C- (4.75 GHz) and L- (1.6 GHz) band backscattering (σo) measured throughout a growth cycle at incidence angles of 15, 35 and 55°. The utilized σo data set was collected by a truck mounted scatterometer over a corn field and is supported by a comprehensive set of ground measurements, including soil moisture and vegetation biomass. Comparison of σo measurement against simulations by the Integral Equation Method (IEM) surface scattering model (Fung et al., 1992) shows that the σo measurements are dominated either by an attenuated soil return or by scattering from vegetation depending on the antenna configuration and growth stage. Further, the measured σo is found to be sensitive to soil moisture even at peak biomass and large incidence angles, which is attributed to scattering along the soil-vegetation pathway.For the simulation of C-band σo and the retrieval of soil moisture two methods have been applied, which are the semi-empirical water cloud model (Attema & Ulaby, 1978) and a novel method. This alternative method uses the empirical relationships between the vegetation water content (W) and the ratio of the bare soil and the measured σo to correct for vegetation. It is found that this alternative method is superior in reproducing the measured σo as well as retrieving soil moisture. The highest retrieval accuracies are obtained at a 35° incidence angle leading to RMSD's of 0.044 and 0.037 m3 m− 3 for the HH and VV-polarization, respectively. In addition, the sensitivity of these soil moisture retrievals to W and surface roughness parameter uncertainties is investigated.  相似文献   

14.
We identify upwelling signatures caused by eddy interactions with bottom topography on the downstream of the Malta Plateau, using space-borne remote sensing Advanced Very High Resolution Radiometer (AVHRR) imagery, ERS-1 Synthetic Aperture Radar (SAR) imagery, Topex/Poseidon/ERS-2 (TPE) altimeter maps, and Orbview2/SeaWiFS imagery. The cyclonically rotating eddy contributes to upwelling, reducing the sea surface temperature (SST) by about 1-2°C inside the eddy with respect to the ambient ocean. Ocean colour imagery shows increases in pigment concentrations (0.5 mg m-3) associated with the eddy. In TPE altimeter maps, the eddy is manifested as a 40-50 km wide 'bowl-shaped' structure, with negative sea height anomalies ranging between 6 and 10 cm. The eddy-type motion is further evidenced in SAR imagery by the appearance of striations forming along the boundaries of the eddy as well as reduced backscatter at its centre. The study demonstrates the utility of sensor fusion and identifies a set of generic indicators for upwelling identification and tracking using multiple sensors.  相似文献   

15.
Soil moisture is an important hydrologic variable of great consequence in both natural and agricultural ecosystems. Unfortunately, it is virtually impossible to accurately assess the spatial and temporal variability of surface soil moisture using conventional, point measurement techniques. Remote sensing has the potential to provide areal estimates of soil moisture at a variety of spatial scales. This investigation evaluates the use of European Remote Sensing Satellite (ERS-2) C-band, VV polarization, synthetic aperture radar (SAR) data for regional estimates of surface soil moisture. Radar data were acquired for three contiguous ERS-2 scenes in the Southern Great Plains (SGP) region of central Oklahoma from June 1999 to October 2000. Twelve test sites (each approximately 800?m×800?m) were sampled during the ERS-2 satellite overpasses in order to monitor changes in soil moisture and vegetation on the ground. An average radar backscattering coefficient was calculated for each test site. Landsat-5 and -7 Thematic Mapper (TM) scenes of the experimental sites close in time to the ERS-2 acquisition dates were also analysed. The TM scenes were used to monitor land cover changes and to calculate the Normalized Difference Vegetation Index (NDVI). Land cover and ground data were used to interpret the radar-derived soil moisture data. Linear relationships between soil moisture and the backscattering coefficient were established. Using these equations, soil moisture maps of the Little Washita and the El Reno test areas were produced.  相似文献   

16.
This paper presents an original methodology to retrieve surface (<5 cm) soil moisture over low vegetated regions using the two active microwave instruments of ERS satellites. The developed algorithm takes advantage of the multi-angular configuration and high temporal resolution of the Wind Scatterometer (WSC) combined with the SAR high spatial resolution. As a result, a mixed target model is proposed. The WSC backscattered signal may be represented as a combination of the vegetation and bare soil contributions weighted by their respective fractional covers. Over our temperate regions and time periods of interest, the vegetation signal is assumed to be principally due to forests backscattered signal. Then, thanks to the high spatial resolution of the SAR instrument, the forest contribution may be quantified from the analysis of the SAR image, and then removed from the total WSC signal in order to estimate the soil contribution. Finally, the Integral Equation Model (IEM, [IEEE Transactions on Geoscience and Remote Sensing, 30 (2), (1992) 356]) is used to estimate the effect of surface roughness and to retrieve surface soil moisture from the WSC multi-angular measurements. This methodology has been developed and applied on ERS data acquired over three different Seine river watersheds in France, and for a 3-year time period. The soil moisture estimations are compared with in situ ground measurements. High correlations (R2 greater than 0.8) are observed for the three study watersheds with a root mean square (rms) error smaller than 4%.  相似文献   

17.
The ability of the Advanced Very High Resolution Radiometer (AVHRR) to detect plankton blooms in sediment-free oceanic waters was evaluated. After atmospheric correction, the AVHRR visible channel was found to detect plankton blooms resulting in chlorophyll-a concentrations higher than 3-4 mg m -3 in upwelling features off the US west coast. The AVHRR-derived radiance value also showed positive correlation (R2 = 0.64) with increasing chlorophyll concentrations. In the absence of higher quality ocean colour data, the AVHRR was utilised to image patterns of high plankton concentrations in offshore-flowing upwelling plumes, and to relate the plankton distributions to the occurrence of low backscatter patterns in time-coincident ERS-1 Synthetic Aperture Radar (SAR) imagery. The results indicate that the observed low backscatter areas were caused by the accumulation of biological surfactants released by the plankton blooms. The local surface flow field strongly affected the actual locations and shapes of the surfactant features. Our findings suggest the potential for using satellite ocean colour data in conjunction with SAR imagery to help separate natural slicks from those caused by oil or human activity.  相似文献   

18.
The West African Sahel rainfall regime is known for its spatio-temporal variability at different scales which has a strong impact on vegetation development. This study presents results of the combined use of a simple water balance model, a radiative transfer model and ERS scatterometer data to produce map of vegetation biomass and thus vegetation cover at a spatial resolution of 25 km. The backscattering coefficient measured by spaceborne wind scatterometers over Sahel shows a marked seasonality linked to the drastic changes of both soil and vegetation dielectric properties associated to the alternating dry and wet seasons. For lack of a direct observation, METEOSAT rainfall estimates are used to calculate temporal series of soil moisture with the help of a water balance model. This a priori information is used as input of the radiative transfer model that simulates the interaction between the radar wave and the surface components (soil and vegetation). Then, an inversion algorithm is applied to retrieve vegetation aerial mass from the ERS scatterometer data. Because of the nonlinear feature of the inverse problem to be solved, the inversion is performed using a global stochastic nonlinear inversion method. A good agreement is obtained between the inverse solutions and independent field measurements with mean and standard deviation of −54 and 130 kg of dry matter by hectare (kg DM/ha), respectively. The algorithm is then applied to a 350,000 km2 area including the Malian Gourma and Seno region and a Sahelian part of Burkina Faso during two contrasted seasons (1999 and 2000). At the considered resolution, the obtained herbaceous mass maps show a global qualitative consistency (r2=0.71) with NDVI images acquired by the VEGETATION instrument.  相似文献   

19.
Satellite observations have shown greening trends in tundra in response to climate change, suggesting increases in productivity. To better understand the ability of remote sensing to detect climate impacts on tundra vegetation productivity, we applied a photosynthetic light use efficiency model to simulated climate change treatments of tundra vegetation. We examined changes in the Normalized Difference Vegetation Index (NDVI) and photosynthetic light use efficiency (ε) in experimental warming and moisture treatments designed to simulate climate change in northern Alaska. Plots were warmed either passively, using Open Top Chambers, or actively using electric heaters in the soil. In one set of plots water table depth was actively altered, while other plots were established in locations that were naturally wet or dry. Over two growing seasons, plot-level carbon flux and spectral reflectance measurements were collected, and the results were used to derive a light use efficiency model that could explore the effects of moisture and temperature treatments using remote sensing.Warming increased values of canopy greenness (NDVI) relative to control plots, this effect being more pronounced in wet plots than in dry plots. Light use efficiency (LUE), the relationship between absorbed photosynthetically active radiation (PAR) and gross ecosystem production (GEP), was consistent across warming treatments, growing season, subsequent years, and sites. However, LUE was affected by vegetation type, which varied with moisture; plots in naturally dry locations showed reduced light use efficiency relative to moist plots. Additionally moss exhibited reduced LUE relative to vascular plants. Understory moss production, not accounted for by the usual definition of the fraction of absorbed PAR (fAPAR), was found to be a significant part of total GEP, particularly in areas with low vascular plant cover. These results support the use of light use efficiency models driven by spectral reflectance for estimating GEP in tundra vegetation, provided effects of vegetation functional type (e.g. mosses versus vascular plants) and microtopography are considered.  相似文献   

20.
Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, this lengthy revisit rate often results in a dearth of imagery for a desired time interval (e.g., month, growing season, or year) especially for areas at higher latitudes with shorter growing seasons. In contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high temporal resolution, covering the Earth up to multiple times per day, and depending on the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In this research, we apply and demonstrate a data fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in central British Columbia, Canada. Reflectance data for selected MODIS channels, all of which were resampled to 500 m, and Landsat (at 30 m) were combined to produce 18 synthetic Landsat images encompassing the 2001 growing season (May to October). We compared, on a channel-by-channel basis, the surface reflectance values (stratified by broad land cover types) of four real Landsat images with the corresponding closest date of synthetic Landsat imagery, and found no significant difference between real (observed) and synthetic (predicted) reflectance values (mean difference in reflectance: mixed forest x? = 0.086, σ = 0.088, broadleaf x? = 0.019, σ = 0.079, coniferous x? = 0.039, σ = 0.093). Similarly, a pixel based analysis shows that predicted and observed reflectance values for the four Landsat dates were closely related (mean r2 = 0.76 for the NIR band; r2 = 0.54 for the red band; p < 0.01). Investigating the trend in NDVI values in synthetic Landsat values over a growing season revealed that phenological patterns were well captured; however, when seasonal differences lead to a change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the synthetic Landsat images was, as expected, less effective at predicting reflectance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号