首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Improved land surface emissivities over agricultural areas using ASTER NDVI   总被引:1,自引:0,他引:1  
Land surface emissivity retrieval over agricultural regions is important for energy balance estimations, land cover assessment and other related environmental studies. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) produces images of sufficient spatial resolution (from 15 m to 90 m) to be of use in agricultural studies, in which fields of crops are too small to be well-resolved by low resolution sensors. The ASTER project generates land surface emissivity images as a Standard Product (AST05) using the Temperature/Emissivity Separation (TES) algorithm. However, the TES algorithm is prone to scaling errors in estimating emissivities for surfaces with low spectral contrast if the atmospheric correction is inaccurate. This paper shows a comparison between the land surface emissivity estimated with the TES algorithm and from a simple approach using the Normalized Difference Vegetation Index (NDVI) for five ASTER images (28 June 2000, 15 August 2000, 31 August 2000, 28 April 2001 and 02 August 2001) of the agricultural area of Barrax (Albacete, Spain). The results indicate that differences are < 1% for ASTER band 13 (10.7 μm) and < 1.5% for band 14 (11.3 μm), but > 2% for bands 10 (8.3 μm), 11 (8.6 μm) and 12 (9.1 μm). The emissivities for the five ASTER bands were tested against in situ measurements carried out with the CIMEL CE 312-2 field radiometer, the NDVI method giving root mean square errors (RMSE) < 0.005 over vegetated areas and RMSE < 0.015 over bare soil, and the TES algorithm giving RMSE ∼ 0.01 for vegetated areas but RMSE > 0.03 over bare soil. The errors and inconsistencies for ASTER bands 13 and 14 are within those anticipated for TES, but the greater errors for bands 10-12 suggest the presence of problems related to atmospheric compensation and model assumptions about soil spectra. The NDVI method uses visible/near-infrared data co-acquired with the thermal images to estimate vegetation cover and, hence, provides an independent constraint on emissivity. The success of this approach suggests that it may be useful for daytime images of agricultural or other heavily vegetated areas, in which the TES algorithm has occasional failures.  相似文献   

2.
Land surface temperature retrieved with temperature-emissivity separation (TES) and split-window (SW) algorithms from six-channel Thermal Infrared Multispectral Scanner (TIMS) data in the HAPEX-Sahel experiment agreed with contemporaneous ground temperature measurements to within ±1 °C (TES and SW with channels at 10.8 and 11.7 μm, or SW-56). The SW algorithm used with TIMS channels at 8.4 and 8.7 μm (SW-12) underestimated ground temperatures by 2-5 °C. The TES method required atmospheric correction of at-sensor radiances, which was done with local radiosonde data and MODTRAN 4, and an empirical relationship between the spectral range of emissivity and its minimum value. Emissivity data required for the SW algorithms were obtained using vegetation cover estimates from near-coincident reflective remote sensing data. The temperature underestimation of the SW-12 algorithm could be caused by errors in the emissivity inputs calculated from the vegetation cover. Such errors were due to the high variability of surface emissivity in the 8-9-μm waveband, which was much larger than in the 10-12-μm region. This was checked using TES derived emissivities as inputs of the SW algorithms, and comparing the resulting temperatures with the TES temperatures. In this case, both the SW-56 and SW-12 temperatures agreed with TES within ±1 °C for all sites and scenes.  相似文献   

3.
There is considerable interest in using remote sensing to characterize the hydrologic behavior of the land surface on a routine basis. Information on moisture fluxes between the surface and lower atmosphere reveals linkages and land-atmosphere feedback mechanisms, aiding our understanding of energy and water balance cycles. Techniques that combine information on land and atmospheric properties with remotely sensed variables would allow improved prediction for a number of hydrological variables. Over the last few decades, there has been a focus on better determining evapotranspiration and its spatial variability, but for many regions routine prediction is not generally available at a spatial resolution appropriate to the underlying surface heterogeneity. Over agricultural regions, this is particularly critical, since the spatial extent of typical field scales is not regularly resolved within the pixel resolution of satellite sensors. Understanding the role of landscape heterogeneity and its influence on the scaling behavior of surface fluxes as observed by satellite sensors with different spatial resolutions is a critical research need. To attend this task, data from Landsat-ETM (60 m), ASTER (90 m), and MODIS (1020 m) satellite platforms are employed to independently estimate evapotranspiration. The range of the satellite sensor resolutions allows analyses that span scales from (point-scale) in-situ tower measurements to the MODIS kilometer-scale. Evapotranspiration estimates derived at these multiple resolutions were assessed against eddy covariance flux measurements collected during the 2002 Soil Moisture Atmospheric Coupling Experiment (SMACEX) over the Walnut Creek watershed in Iowa. Together, these data allow a comprehensive scale intercomparison of remotely sensed predictions, which include intercomparisons of the evapotranspiration products from the various sensors as well as a statistical analysis for the retrievals at the watershed scale. A high degree of consistency was observed between the retrievals from the higher-resolution satellite platforms (Landsat-ETM and ASTER). The MODIS-based estimates, while unable to discriminate the influence of land surface heterogeneity at the field scale, effectively reproduced the watershed average response, illustrating the utility of this sensor for regional-scale evapotranspiration estimation.  相似文献   

4.
Thermal Infrared (TIR) data are supplied by instruments on several satellite platforms including the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), which was launched on the Terra satellite in 1999. ASTER has five bands in the TIR and a spatial resolution of 90 m. A mean seasonal, gridded, Land Surface Temperature and Emissivity (LST&E) database has been produced at 100 m spatial resolution using all the ASTER scenes acquired for the months of Jan-Mar (winter) and Jul-Sep (summer) over North America. Version 2.0 of the North American ASTER Land Surface Database (NAALSED) (http://emissivity.jpl.nasa.gov) has now been released and includes two key refinements designed to improve the accuracy of emissivities over water bodies and account for the effects of fractional vegetation cover. The water adjustment replaces ASTER emissivity values over inland water bodies with a measured library emissivity spectrum of distilled water, and then re-calculates the surface temperatures using a split-window algorithm. The accuracy of ASTER emissivities over vegetated surfaces is improved by applying a fractional vegetation cover adjustment (TES_Pv) to the ASTER Temperature Emissivity Separation (TES) calibration curve. Comparisons of NAALSED emissivity spectra with in-situ data measured over a grassland in Northern Texas resulted in a combined absolute difference for all five ASTER bands of 1.0% for the summer emissivity data, and 0.1% for the winter data—a 33-50% improvement over the original TES results.  相似文献   

5.
The Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on NASA's Terra and Aqua satellites image most of the Earth multiple times each day, providing useful data on fires that cannot be practically acquired using other means. Unfortunately, current fire products from MODIS and other sensors leave large uncertainties in measurements of fire sizes and temperatures, which strongly influence how fires spread, the amount and chemistry of their gas and aerosol emissions, and their impacts on ecosystems. In this study, we use multiple endmember spectral mixture analysis (MESMA) to retrieve subpixel fire sizes and temperatures from MODIS, possibly overcoming some limitations of existing methods for characterizing fire intensities such as estimating the fire radiative power (FRP). MESMA is evaluated using data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to assess the performance of FRP and MESMA retrievals of fire properties from a simultaneously acquired MODIS image, for a complex of fires in Ukraine from August 21, 2002. The MESMA retrievals of fire size described in this paper show a slightly stronger correlation than FRP does to fire pixel counts from the coincident ASTER image. Prior to this work, few studies, if any, had used MESMA for retrieving fire properties from a broad-band sensor like MODIS, or compared MESMA to higher-resolution fire data or other measures of fire properties like FRP. In the future, MESMA retrievals could be useful for fire spread modeling and forecasting, reducing hazards that fires pose to property and health, and enhancing scientific understanding of fires and their effects on ecosystems and atmospheric composition.  相似文献   

6.
Abstract

Land surface temperature (LST) and emissivity for large areas can only be derived from surface-leaving radiation measured by satellite sensors. These measurements represent the integrated effect of the surface and are, thus, for many applications, superior to point measurements on the ground, e.g. in Earth's radiation budget and climate change detection. Over the years, a substantial amount of research was dedicated to the estimation of LST and emissivity from passive sensor data. This article provides the theoretical basis and gives an overview of the current status of this research. Sensors operating in the visible, infrared and microwave range onboard various meteorological satellites are considered, e.g. Meteosat-MVIRI, NOAA-AVHRR, ERS-ATSR, Terra-MODIS, Terra-ASTER and DMSP-SSM/I. Atmospheric effects on measured brightness temperatures are described and atmospheric corrections using radiative transfer models (RTM) are explained. The substitution of RTM with neural networks (NN) for faster forward calculations is also discussed. The methods reviewed for LST estimation are the single-channel method, the split-window techniques (SWT), and the multi-angle method, and, for emissivity estimation, the normalized emissivity method (NEM), the thermal infrared spectral indices (TISI) method, the spectral ratio method, alpha residuals, normalized difference vegetation index (NDVI )-based methods, classification-based emissivity and the temperature emissivity separation (TES) algorithm.  相似文献   

7.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) collects five-channel thermal-infrared images that are calibrated, corrected for atmospheric effects, and then converted to land surface temperature and emissivity products by the ASTER Temperature/Emissivity Separation (TES) algorithm. TES scales low- and high-contrast surfaces differently, and has been validated over water (low contrast) and rock (high contrast). Performance of TES over agricultural areas, however, has not been evaluated specifically. To address this issue, field measurements of “ground truth” were made over bare soil in addition to green grass, alfalfa and corn, at an agricultural research site in Spain during two coincident campaigns (SPectrA Barrax Campaign, or SPARC, and Exploitation of AnGular effects in Land surface, or EAGLE) during an ASTER overflight. Comparison of the ASTER Standard Products for land surface temperature (AST-08) and emissivity (AST-05) with ground measurements for the crops (corn and barley, plus grass) showed that accuracies of ± 1.5 K and ± 0.01, respectively, were achieved there. However, bare soil was assessed incorrectly by TES as having high emissivity contrast, leading to inaccurate scaling and low apparent emissivities.  相似文献   

8.
Subsurface and surface coal fires form serious environmental, economic and safety problems in coal‐producing countries like China and India. Remote sensing offers the possibility of detecting and studying thermal anomalies due to coal fires. Emissivity plays an important role in determining the surface temperature of a body using remotely sensed data. In the present study an attempt is made to use satellite‐derived emissivity to estimate the surface temperature in Wuda, north China. With the use of multispectral thermal Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data (five bands in 8.125–11.65 µm region) in combination with a Temperature/Emissivity Separation (TES) algorithm, the anomalous pixels due to coal fires can be extracted from the background to achieve a qualitative study of coal fires. In the present study, during night‐time overpass of ASTER, satellite images have been recorded and simultaneous field measurements were collected. These field measurements were used to process the satellite thermal data and to validate the results obtained. Using the TES approach, satellite‐based temperature corresponded well with actual field measurements at selected locations.  相似文献   

9.
We use multispectral MODIS/ASTER Airborne Simulator (MASTER) data collected at Mt. Rainier, Washington (USA) to map spatial covariance between snowpack properties and to evaluate techniques for quantitative estimation of reflectance, grain size, and temperature. The late-August MASTER images reveal a distinct pattern of snow contaminant content, grain size, and temperature related to a recent snowfall and late-summer melting. Spatial correlation between grain size and temperature patterns suggests that rapid destructive metamorphism of the fresh snow occurred when temperatures were near 0 °C. We use 10 specific locations to evaluate hemispherical-directional reflectance factor (HDRF), grain size, and temperature retrievals. We map relative snow contaminant content using visible (0.4-0.8 μm) HDRF spectra. Atmospheric correction and topographic modeling limit the accuracy of HDRF estimates. We use MASTER-derived spectra near 1.8 and 2.2 μm to estimate optical grain size (by comparison to modeled layers of ice spheres) and physical grain size (by comparison to measured spectra with known physical grain size and by correlation to ground measurements). Estimated physical grain sizes were less than estimated optical grain sizes. Differing definitions of optical and physical grain sizes could contribute to this discrepancy. Limitations at 1.8 and 2.2 μm, including reduced discrimination between larger grain radii (>∼500 μm physical, >∼200 μm optical) and low signal-to-noise ration with atmospheric effects and decreasing solar irradiance, suggest that grain size retrieval may be improved at other wavelengths (e.g., 1.1 μm). Accounting for uncertainty in emissivity, atmospheric correction, and detector noise, we estimate systematic errors in our radiant temperatures at <1.8 °C. This study shows both strengths and limitations for coregistered visible, short-wave infrared, and thermal infrared images to estimate snowpack properties and reveal their spatial coherence.  相似文献   

10.
The performance of Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) thermal infrared (TIR) data product algorithms was evaluated for low spectral contrast surfaces (such as vegetation and water) in a test site close to Valencia, Spain. Concurrent ground measurements of surface temperature, emissivity, and atmospheric radiosonde profiles were collected at the test site, which is a thermally homogeneous area of rice crops with nearly full vegetation cover in summer. Using the ground data and the local radiosonde profiles, at-sensor radiances were simulated for the ASTER TIR channels and compared with L1B data (calibrated at-sensor radiances) showing discrepancies up to 3% in radiance for channel 10 at 8.3 μm (equivalently, 2.5 °C in temperature or 7% in emissivity), whereas channel 13 (10.7 μm) yielded a closer agreement (maximum difference of 0.5% in radiance or 0.4 °C in temperature). We also tested the ASTER standard products of land surface temperature (LST) and spectral emissivity generated with the Temperature-Emissivity Separation (TES) algorithm with standard atmospheric correction from both global data assimilation system profiles and climatology profiles. These products showed anomalous emissivity spectra with lower emissivity values and larger spectral contrast (or maximum-minimum emissivity difference, MMD) than expected, and as a result, overestimated LSTs. In this work, a scene-based procedure is proposed to obtain more accurate MMD estimates for low spectral contrast materials (vegetation and water) and therefore a better retrieval of LST and emissivity with the TES algorithm. The method uses various gray-bodies or near gray-bodies with known emissivities and assumes that the calibration and atmospheric correction performed with local radiosonde data are accurate for channel 13. Taking the channel 13 temperature (atmospherically and emissivity corrected) as the true LST, the radiances for the other channels were simulated and used to derive linear relationships between ASTER digital numbers and at-ground radiances for each channel. The TES algorithm was applied to the adjusted radiances and the resulting products showed a closer agreement with the ground measurements (differences lower than 1% in channel 13 emissivities and within ± 0.3 °C in temperature for rice and sea pixels).  相似文献   

11.
Land Surface Emissivity (LSE) is a key parameter in the thermal remote sensing, with several important applications, most notably in Land Surface Temperature (LST) estimation. This paper presents a semi-empirical method of LSE estimation from remote sensing data based on a fusion of spectral indices using the ensemble regression methods. The performance of the proposed method for Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data was evaluated and compared with other semi-empirical methods developed for these sensors. The proposed method was designed in four stages. In the first stage, the reflectance of non-thermal bands and emissivity of thermal bands were simulated for different classes using the ASTER spectral library and the spectral response function of each sensor. In the second stage, the dataset to be used for the training of ensemble regression was arranged by calculating a number of spectral indices, which constitute the feature space along with non-thermal bands. In the third stage, the regression between emissivity of thermal bands of each sensor and the features extracted in the second stage was derived by the use of bagging, boosting and Random Forest (RF) regression methods. In the final stage Using Normalized Difference Vegetation Index (NDVI) values, the image was categorized into three classes including vegetation, non-vegetation and mixture areas using conditions NDVI > 0.5, NDVI < 0.2 and 0.2 ≤ NDVI ≤ 0.5, respectively. The non-vegetation class was then categorized to soil, rock, and man-made classes using land use map. The spectral indices of these classes were then calculated, and the corresponding model trained in the third stage was used to estimate the LSE for that band. The results of LSE estimations were compared with the standard product of each sensor. Due to the lack of standard product for Landsat-8, the ASTER product was used as a substitute. For better analysis, the proposed method was also evaluated with other semi-empirical methods developed for MODIS, ASTER and OLI/TIRS sensors. This evaluation showed that the lowest Root Mean Square Error (RMSE) values for OLI/TIRS bands 10 and 11 are 0.0070 and 0.0075 obtained, respectively, by bagging and RF regression methods. For ASTER bands 13 and 14, the lowest RMSE values of 0.0078 and 0.0077 are both obtained by RF regression. For MODIS bands 31 and 32, the lowest RMSE values are 0.0053 and 0.0049 and obtained by boosting method. A comparison between the proposed method and other semi-empirical methods provided for these sensors demonstrated the ability of the method to improve the RMSE by up to 0.5%. Regarding the higher accuracy and applicability of the proposed method, it can serve as an effective and efficient means of estimating LSE using remote sensing data.  相似文献   

12.
This work provides an evaluation of the discrete anisotropy radiative transfer (DART) three-dimensional (3D) model in assessing the simulation of directional brightness temperatures (T b) at both sensor and surface levels. Satellite imagery acquired with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), airborne imagery acquired with the Airborne Hyperspectral Scanner (AHS) sensor and ground-based measurements collected over an agricultural area were used to evaluate the DART model at nadir views. Directional radiometric temperatures measured with a goniometric system at ground level were also used to evaluate modelling results at different view angles. The DART model was evaluated over three homogeneous plots: bare soil (BS), green grass (GG) and sand (NS). The results show good agreement between the simulations and the satellite, airborne and ground-based measurements, with root mean square errors (RMSEs) less than 2.0 K. However, three major discrepancies were found: (1) differences greater than 4.0 K over BS when comparing DART and ASTER, attributed to turbulence-induced temperature fluctuations, (2) higher differences in sensor-level than in surface-level comparisons when using AHS due to thermal heterogeneity of the selected regions of interest in the image and also to differences in atmospheric correction performed over the imagery and the correction included in the DART model, especially for bands located in the lowest atmospheric transmissivity regions and (3) RMSEs greater than 2.0 K when comparing DART results and ground measurements over the NS plot, due to the strong emissivity correction in the 8.0–9.0 μm bands, where the measured emissivity was below 0.75. Despite these discrepancies, we show that the DART model is a useful tool for simulating remotely sensed thermal images over different landscapes. Finally, new versions of this model are continuously being released to solve technical problems and improve the simulation results.  相似文献   

13.
Knowledge of the surface emissivity is important for determining the radiation balance at the land surface. For heavily vegetated surfaces, there is little problem since the emissivity is relatively uniform and close to one. For arid lands with sparse vegetation, the problem is more difficult because the emissivity of the exposed soils and rocks is highly variable. With multispectral thermal infrared (TIR) observations, it is possible to estimate the spectral emissivity variation for these surfaces. We present data from the TIMS (Thermal Infrared Multispectral Scanner) instrument, which has six channels in the 8- to 12-μm region. TIMS is a prototype of the TIR portion of the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) instrument on NASA's Terra (EOS-AM1) platform launched in December 1999. The Temperature Emissivity Separation (TES) algorithm, developed for use with ASTER data, is used to extract the temperature and six emissivities from the six channels of TIMS data. The algorithm makes use of the empirical relation between the range of observed emissivities and their minimum value. This approach was applied to the TIMS data acquired over the USDA/ARS Jornada Experimental Range in New Mexico. The Jornada site is typical of a desert grassland where the main vegetation components are grass (black grama) and shrubs (primarily mesquite) in the degraded grassland. The data presented here are from flights at a range of altitudes from 800 to 5000 m, yielding a pixel resolution from 3 to 12 m. The resulting spectral emissivities are in qualitative agreement with laboratory measurements of the emissivity for the quartz rich soils of the site. The derived surface temperatures agree with ground measurements within the standard deviations of both sets of observations. The results for the 10.8- and 11.7-μm channels show limited variation of the emissivity values over the mesquite and grass sites indicating that split window approaches may be possible for conditions like these.  相似文献   

14.
Wildland fires are an annually recurring phenomenon in many terrestrial ecosystems. Accurate burned area estimates are important for modeling fire-induced trace gas emissions and rehabilitating post-fire landscapes. High spatial and spectral resolution MODIS/ASTER (MASTER) airborne simulator data acquired over three 2007 southern California burns were used to evaluate the sensitivity of different spectral indices at discriminating burned land shortly after a fire. The performance of the indices, which included both traditional and new band combinations, was assessed by means of a separability index that provides an assessment of the effectiveness of a given index at discriminating between burned and unburned land. In the context of burned land applications results demonstrated (i) that the highest sensitivity of the longer short wave infrared (SWIR) spectral region (1.9 to 2.5 μm) was found at the band interval from 2.31 to 2.36 μm, (ii) the high discriminatory power of the mid infrared spectral domain (3 to 5.5 μm) and (iii) the high potential of emissivity data. As a consequence, a newly proposed index which combined near infrared (NIR), longer SWIR and emissivity outperformed all other indices when results were averaged over the three fires. Results were slightly different between land cover types (shrubland vs. forest-woodland). Prior to use in the indices the thermal infrared data were separated into temperature and emissivity to assess the benefits of using both temperature and emissivity. Currently, the only spaceborne sensor that provides moderate spatial resolution (< 100 m) temperature and emissivity data is the Advanced Spaceborne and Thermal Emission Radiometer (ASTER). Therefore, our findings can open new perspectives for the utility of future sensors, such as the Hyperspectral Infrared (HyspIRI) sensor. However, further research is required to evaluate the performance of the newly proposed band combinations in other vegetation types and different fire regimes.  相似文献   

15.
Ocean transparency, often measured using Secchi disk, is a useful index of water quality or productivity and is used in many environmental studies. The spaceborne ocean color sensors provide synoptic and regular radiometric data and can be used for applying environmental policies if the data is converted into relevant biogeochemical properties. We adapted and developed semi-analytical and empirical algorithms to estimate the Secchi depth from satellite ocean color data in both coastal and oceanic waters. The development of the algorithms is based on the use of a comprehensive in situ bio-optical dataset. The algorithms are validated using an extensive set of coincident satellite estimates and in situ measurements of the Secchi depth (so-called matchups). More than 400 matchups are compiled for the MERIS, MODIS and SeaWiFS sensors. The comparison between Secchi depth retrievals from remote sensing data and in situ measurements yields determination coefficients (R2) between 0.50 and 0.73, depending on the sensor and algorithm. The type II linear regression slopes and intercepts vary between 0.95 and 1.46, and between − 0.8 and 6.2 m, respectively. While semi-analytical algorithms provide the most promising results on in situ data, the empirical one proves to be more robust on remote sensing data because it is less sensitive to error due to erroneous atmospheric corrections. Using ocean color archives, one can derive maps of ocean transparency for different areas. Our climatology of the Secchi depth based on ocean color for the transition zone between the North Sea and Baltic Sea is compared to an historical dataset.  相似文献   

16.
Water skin temperature derived from thermal infrared satellite data are used in a wide variety of studies. Many of these studies would benefit from frequent, high spatial resolution (100 m pixels) thermal imagery but currently, at any given location, such data are only available every few weeks from spaceborne sensors such as ASTER. Lower spatial resolution (1 km pixels) thermal imagery is available multiple times per day at any given location, from several sensors such as MODIS on board both the AQUA and TERRA satellite platforms. In order to fully exploit lower spatial resolution imagery, a sub-pixel unmixing technique has been developed and tested at Quesnel Lake, British Columbia, Canada. This approach produces accurate, frequent high spatial resolution water skin temperature maps by exploiting a priori knowledge of water boundaries derived from vectorized water features. The pixel water-fraction maps are then input to a gradient descent algorithm to solve the mixed pixel ground leaving radiance equation for sub-pixel water temperature. Ground-leaving radiance is estimated from standard temperature and emissivity data products for pure pixels and a simple regression technique to estimate atmospheric effects. In this test case, MODIS 1 km thermal imagery was used along with 1:50,000 water features to create a high-resolution (100 m) water skin temperature map. This map is compared to a concurrent ASTER temperature image and found to be within 1 °C of the ASTER skin temperature 99% of the time. This is a considerable improvement over the 2.55 °C difference between the original MODIS product and ASTER image due to land temperature contamination. The algorithm is simple, effective, and unlocks a largely untapped resource for limnological and hydrological studies.  相似文献   

17.
The Dunhuang Chinese Radiometric Calibration Site (CRCS), used for the vicarious calibration (VC) of reflective solar bands (RSBs), was determined as the primary radiometric calibration site for Chinese space-borne optical sensors and was also selected in 2008 by the Working Group on Calibration and Validation of the Committee on Earth Observation Satellites as one of the instrumented reference sites. In August 2015, an in situ measurement was carried out at the Dunhuang site to evaluate the RSB radiometric calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (NPP) and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua based on the reflectance-based method. A portable spectroradiometer was used in the experiment to obtain the surface reflectance, and the atmospheric parameters were obtained by sun photometers and radiosonde. A Dunhuang surface bidirectional reflectance distribution function model obtained during the field missions in 2008 and 2013 was implemented. Two days of in situ measurement data including 2 days of VIIRS data and 1 day of MODIS data were used for this evaluation. The results show that the radiometric calibration accuracy is within ±2% for most NPP/VIIRS and Aqua/MODIS RSBs based on the Dunhuang site. It should be noted that there is a relatively large difference in the NPP/VIIRS day–night band (DNB) and Aqua/MODIS band 7 results at the central wavelength of 2.1 μm, with biases of – 4.78% and – 5.71%, respectively. One factor contributing to the difference is the atmospheric transmittance calculation in these bands using the 6S radiative transfer model. If Moderate Resolution Atmospheric Transmission model is used for atmospheric transmittance correction, part of the bias of the MODIS band 7 and VIIRS DNB can be eliminated. However, the consistency of the VIIRS M11 and MODIS B7 is 3.47%, which is larger than that of the other bands.  相似文献   

18.
Knowledge of the Land Surface Emissivity (LSE) in the Thermal Infrared (TIR: 8-12 µm) part of the electromagnetic spectrum is essential to derive accurate Land Surface Temperatures (LSTs) from spaceborne TIR measurements. This study focuses on validation of the emissivity product in the North American ASTER Land Surface Emissivity Database (NAALSED) v2.0 — a mean seasonal, gridded emissivity product produced at 100 m spatial resolution using all Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes from 2000 to 2008 over North America (http://emissivity.jpl.nasa.gov). The NAALSED emissivity product was validated over bare surfaces with laboratory measurements of sand samples collected at nine pseudo-invariant sand dune sites located in the western/southwestern USA. The nine sand dune sites cover a broad range of surface emissivities in the TIR. Results show that the absolute mean emissivity difference between NAALSED and the laboratory results for the nine validation sites and all five ASTER TIR bands was 0.016 (1.6%). This emissivity difference is equivalent to approximately a 1 K error in the land surface temperature for a material at 300 K in the TIR.  相似文献   

19.
Given that many operational satellite sensors are not calibrated, while a handful of research sensors are, cross-calibration between the two types of sensor is a cost-effective means of calibration. A new method of sensor cross-calibration is demonstrated here using the Chinese Multi-channel Visible Infrared Scanning radiometer (MVIRS) and the US Moderate Resolution Imaging Spectrometer (MODIS). MVIRS has six channels, equivalent to the current National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and four additional ones for remote sensing of ocean colour and moisture. The MVIRS on-board China's polar-orbiting meteorological satellite (FY-1D) was launched on 15 May 2002 with an earlier overpass time than Terra. The sensor has no on-board calibration assembly. This study attempts to calibrate MVIRS against the well-calibrated MODIS, by taking a series of measures to account for their differences. Clear-sky measurements made from the two sensors in July-October 2002 were first collocated. Using the 6S radiative transfer model, MODIS reflectances measured at the top-of-the atmosphere were converted into surface reflectances. They were corrected to the viewing geometry of the MVIRS using the bidirectional reflectance distribution function (BRDF) measured on the ground. The spectral response functions of the two sensors were employed to account for spectral discrepancies. After these corrections, very close linear correlations were found between radiances estimated from the MODIS and the digital readings from the MVIRS, from which the calibration gains were derived. The gains differ considerably from the pre-launch values and are subject to degradation over time. The calibration accuracy is estimated to be less than 5%, which is compatible to that obtained by the more expensive vicarious calibration approach.  相似文献   

20.
In this paper we analyze the differences obtained in the atmospheric correction of optical imagery covering bands located in the Visible and Near Infra-Red (VNIR), Short-Wave Infra-Red (SWIR) and Themal-Infrared (TIR) spectral regions when atmospheric profiles extracted from different sources are used. In particular, three sensors were used, Compact High Resolution Imaging Spectrometer (CHRIS), Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) and Landsat5 Thematic Mapper (TM), whereas four atmospheric profiles sources were considered: i) local soundings launched near the sensor overpass time, ii) Moderate Resolution Radiometer (MODIS) atmospheric profiles product (MOD07), iii) Atmospheric Correction Parameter Calculator (ACPC) generated by the National Center for Environmental Prediction (NCEP) and iv) Modified Atmospheric Profiles from Reanalysis Information (MAPRI), which includes data from NCEP and National Center of Atmospheric Research (NCAR) Reanalysis project but interpolated to 34 atmospheric levels and resampled to 0.5° × 0.5°. MODIS aerosol product (MOD04) was also used to extract Aerosol Optical Thickness (AOT) values at 550 nm. Analysis was performed for three test dates (12th July 2003, 18th July 2004 and 13th July 2005) over an agricultural area in Spain. Results showed that air temperature vertical profiles were similar for the four sources, whereas dew point temperature profiles showed significant differences at some particular levels. Atmospheric profiles were used as input to MODTRAN4 radiative transfer code in order to compute atmospheric parameters involved in atmospheric correction, with the aim of retrieving surface reflectances in the case of VNIR and SWIR regions, and Land Surface Temperature (LST) in the case of the TIR region. For the VNIR and SWIR region, significant differences depending on the atmospheric profile used were not found, particularly in the Visible region in which the AOT content is the main parameter involved in the atmospheric correction. In the case of TIR, differences depending on the atmospheric profile used were appreciable, since in this case the main parameter involved in the atmospheric correction is the water vapor content, which depends on the vertical profile. In terms of LST retrieval from ASTER data (2004 test case), all profiles provided satisfactory results compared to the ones obtained when using a local sounding, with errors of 0.3 K for ACPC and MAPRI cases and 0.7 K for MOD07. When retrieving LST from TM data (2005 test case), errors for MOD07 and MAPRI were 0.6 and 0.9 K respectively, whereas ACPC provided an error of 2 K. The results presented in this paper show that the different atmospheric profile sources are useful for accurate atmospheric correction when local soundings are not available. In particular, MOD07 product provides atmospheric information at the highest spatial resolution, 5 km, although its use is limited from 2000 to present, whereas MAPRI provides historical information from 1970 to present, but at lower spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号