首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Within the past decade, several global land cover data sets derived from satellite observations have become available to the scientific community. They offer valuable information on the current state of the Earth's land surface. However, considerable disagreements among them and classification legends not primarily suited for specific applications such as carbon cycle model parameterizations pose significant challenges and uncertainties in the use of such data sets.This paper addresses the user community of global land cover products. We first review and compare several global land cover products, i.e. the Global Land Cover Characterization Database (GLCC), Global Land Cover 2000 (GLC2000), and the MODIS land cover product, and highlight individual strengths and weaknesses of mapping approaches. Our overall objective is to present a straightforward method that merges existing products into a desired classification legend. This process follows the idea of convergence of evidence and generates a ‘best-estimate’ data set using fuzzy agreement. We apply our method to develop a new joint 1-km global land cover product (SYNMAP) with improved characteristics for land cover parameterization of the carbon cycle models that reduces land cover uncertainties in carbon budget calculations.The overall advantage of the SYNMAP legend is that all classes are properly defined in terms of plant functional type mixtures, which can be remotely sensed and include the definitions of leaf type and longevity for each class with a tree component. SYNMAP is currently used for parameterization in a European model intercomparison initiative of three global vegetation models: BIOME-BGC, LPJ, and ORCHIDEE.Corroboration of SYNMAP against GLCC, GLC2000 and MODIS land cover products reveals improved agreement of SYNMAP with all other land cover products and therefore indicates the successful exploration of synergies between the different products. However, given that we cannot provide extensive validation using reference data we are unable to prove that SYNMAP is actually more accurate. SYNMAP is available on request from Martin Jung.  相似文献   

3.
Four 1 km global land cover products are currently available to the scientific community: the University of Maryland (UMD) global land cover product, the International Geosphere–Biosphere Programme Data and Information System Cover (IGBP‐DISCover), the MODerate resolution Imaging Spectrometer (MODIS) global land cover product and Global Land Cover 2000 (GLC2000). Because of differences in data sources, temporal scales, classification systems and methodologies, it is important to compare and validate these global maps before using them for a variety of studies at regional to global scales. This study aimed to perform the validation and comparison of the four global land cover datasets, and to examine the suitability and accuracy of different coarse spatial resolution datasets in mapping and monitoring cropland across China. To meet this objective, we compared the four global land cover products with the National Land Cover Dataset 2000 (NLCD‐2000) at three scales to evaluate the accuracy of estimates of aggregated cropland areas in China. This was followed by a spatial comparison to assess the accuracies of the four products in estimating the spatial distribution of cropland across China. A comparative analysis showed that there are varying levels of apparent discrepancies in estimating the cropland of China between these four global land cover datasets, and that both area totals and spatial (dis)agreement between them vary from region to region. Among these, the MODIS dataset has the best fit in depicting China's croplands. The coarse spatial resolution and the per pixel classification approach, as well as landscape heterogeneity, are the main reasons for the large discrepancies between the global land cover datasets tested and the reference data.  相似文献   

4.
A new African land-cover data set has been developed using multi-seasonal Landsat Operational Land Imager (OLI) imagery mainly acquired around 2014, supplemented by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+). Each path/row location was covered by five images, including one in the growing season of vegetation and the others in four meteorological seasons (i.e. spring, summer, autumn, and winter), choosing the image with the least cloud coverage. The data set has two classification schemes, i.e. Finer Resolution Observation and Monitoring – Global Land Cover (FROM-GLC) and Global Land Cover 2000 (GLC2000), providing greater flexibility in product comparisons and applications. Random forest was used as the classifier in this project. Overall accuracies were 71% and 67% for the maps in the FROM-GLC classification scheme at level 1 and level 2, respectively, and 70% for the map in the GLC2000 classification scheme. The newly developed African land-cover map achieved a greater improvement in accuracy compared to previous products in the FROM-GLC project. Multi-seasonal imagery helped increase the mapping accuracy by better differentiating vegetation types with similar spectral features in one specific season and identifying vegetation with a shorter growing season. Night light data with 1 km resolution was used to identify the potential area of impervious surfaces to avoid overestimating the distribution of impervious surfaces without decreasing the spatial resolution. Stacking multi-seasonal mapping results could adequately minimize the disturbance of cloud and shade.  相似文献   

5.
Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.  相似文献   

6.
Two of the most widely used land‐cover data sets for the United States are the National Land‐Cover Data (NLCD) at 30‐m resolution and the Global Land‐Cover Characteristics (GLCC) at 1‐km nominal resolution. Both data sets were produced around 1992 and expected to provide similar land‐cover information. This study investigated the spatial distribution of NLCD within major GLCC classes at 1‐km unit over a total of 11 agricultural‐related eco‐regions across the continental United States. Our results exhibited that data agreement or relationship between the GLCC and NLCD was higher for the eco‐regions located in the corn belt plains with homogeneous or less complicated land‐cover distributions. The GLCC cropland primarily corresponded to NLCD row crops, pasture/hay and small grains, and was occasionally related to NLCD forest, grassland and shrubland in the remaining eco‐regions due to high land‐cover diversity. The unique GLCC classes of woody savanna and savanna were mainly related to the NLCD orchard and grassland, respectively, in the eco‐region located in the Central Valley of California. The GLCC urban/built‐up among vegetated areas strongly agreed to the NLCD urban for the eco‐regions in the corn belt plains. A set of sub‐class land‐cover information provided through this study is valuable to understand the degrees of spatial similarity for the major global vegetated classes. The sub‐class information from this study provides reference for substituting less‐detailed global data sets for detailed NLCD to support national environment studies.  相似文献   

7.
Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatio-temporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of variance suggesting that the algorithm is reliable and robust, except in the tropics where some systematic differences are observed. Finally, comparisons with ground data suggest that the algorithm is performing well, but that end of season metrics associated with vegetation senescence and dormancy have higher uncertainties than start of season metrics.  相似文献   

8.
The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches.  相似文献   

9.
Global land use and land cover products in highly dynamic tropical ecosystems lack the detail needed for natural resource management and monitoring at the national and provincial level. The MODIS sensor provides improved opportunities to combine multispectral and multitemporal data for land use and land cover mapping. In this paper we compare the MODIS Global Land Cover Classification Product with recent land use and land cover maps at the national level over a characteristic location of Miombo woodlands in the province of Zambezia, Mozambique. The performances of three land cover-mapping approaches were assessed: single-date supervised classification, principal component analysis of band-pair difference images, and multitemporal NDVI analysis. Extensive recent field data were used for the definition of the test sites and accuracy assessment. Encouraging results were achieved with the three approaches. The classification results were refined with the help of a digital elevation model. The most consistent results were achieved using principal component analysis of band-pair difference images. This method provided the most accurate classifications for agriculture, wetlands, grasslands, thicket and open forest. The overall classification accuracy reached 90%. The multitemporal NDVI provided a more accurate classification for the dense forest cover class. The selection of the right image dates proved to be critical for all the cases evaluated. The flexibility of these alternatives makes them promising options for rapid and inexpensive land cover mapping in regions of high environmental variability such as tropical developing countries.  相似文献   

10.
Land cover is an important component of landscape character. The spatial configuration and heterogeneity of land cover can influence species distributions and patterns of biodiversity. Sustainable countryside planning and land management policy in Great Britain require the mapping of land cover heterogeneity at a national scale. Here, we map four measures of land cover heterogeneity across Great Britain using Land Cover Map 2000. We calculate land cover richness, diversity, evenness and similarity within and between 1 × 1 km grid cells of the British National Grid. From this we are able to identify assemblages of land cover types that are associated with high or low landscape heterogeneity, and where they occur geographically.  相似文献   

11.

Land cover maps are used widely to parameterize the biophysical properties of plant canopies in models that describe terrestrial biogeochemical processes. In this paper, we describe the use of supervised classification algorithms to generate land cover maps that characterize the vegetation types required for Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) retrievals from MODIS and MISR. As part of this analysis, we examine the sensitivity of remote sensing-based retrievals of LAI and FPAR to land cover information used to parameterize vegetation canopy radiative transfer models. Specifically, a decision tree classification algorithm is used to generate a land cover map of North America from Advanced Very High Resolution Radiometer (AVHRR) data with 1 km spatial resolution using a six-biome classification scheme. To do this, a time series of normalized difference vegetation index data from the AVHRR is used in association with extensive site-based training data compiled using Landsat Thematic Mapper (TM) and ancillary map sources. Accuracy assessment of the map produced via decision tree classification yields a cross-validated map accuracy of 73%. Results comparing LAI and FPAR retrievals using maps from different sources show that disagreement in land cover labels generally do not translate into strong disagreement in LAI and FPAR maps. Further, the main source of disagreement in LAI and FPAR maps can be attributed to specific biome classes that are characterized by a continuum of fractional cover and canopy structure.  相似文献   

12.
The present study focuses on the development of a new land cover classification product over France at 1 km resolution. It is based on data sets from the Earth observing system SPOT4/VEGETATION. The satellite measurements are aimed at supporting regional efforts to set up global mosaics on new land cover products. They have been acquired in the frame of the Global Land Cover 2000 project. The instrument design relies on advanced technology, which leads to an improved radiometric and geometric resolution data. Such characteristics allow taking full benefit of the daily repetitiveness of the VEGETATION wide field-of-view sensor without the drawback of a variable pixel size on the image edge. Several physical processing steps are successively operated to the images on a per-pixel basis to remove detector blindness, to filter cloud contamination, and finally to correct both atmospheric and surface anisotropy effects. A new thematic map using the K-means clustering method has been built. First, the results of the satellite-based land cover classification has been successfully compared with the Coordination of Information on the Environment (CORINE) database which serves as a reference to appraise the reliability of the study. Then, it has been inter-compared with land cover products derived from MODIS and AVHRR sensors. For this, an aggregative scheme particularly focused on major land units (forest, grassland, cropland) adopted in order to yield a whole mapping at the same geographic projection and space resolution. The discrepancies between maps enhance the quality of the proposed product, thanks to the use of advanced data processing and a more appropriate method.  相似文献   

13.
The Northern Eurasian land mass encompasses a diverse array of land cover types including tundra, boreal forest, wetlands, semi-arid steppe, and agricultural land use. Despite the well-established importance of Northern Eurasia in the global carbon and climate system, the distribution and properties of land cover in this region are not well characterized. To address this knowledge and data gap, a hierarchical mapping approach was developed that encompasses the study area for the Northern Eurasia Earth System Partnership Initiative (NEESPI). The Northern Eurasia Land Cover (NELC) database developed in this study follows the FAO-Land Cover Classification System and provides nested groupings of land cover characteristics, with separate layers for land use, wetlands, and tundra. The database implementation is substantially different from other large-scale land cover datasets that provide maps based on a single set of discrete classes. By providing a database consisting of nested maps and complementary layers, the NELC database provides a flexible framework that allows users to tailor maps to suit their needs. The methods used to create the database combine empirically derived climate–vegetation relationships with results from supervised classifications based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. The hierarchical approach provides an effective framework for integrating climate–vegetation relationships with remote sensing-based classifications, and also allows sources of error to be characterized and attributed to specific levels in the hierarchy. The cross-validated accuracy was 73% for the land cover map and 73% and 91% for the agriculture and wetland classifications, respectively. These results support the use of hierarchical classification and climate–vegetation relationships for mapping land cover at continental scales.  相似文献   

14.
With the development of the global economy, environmental research has become more important than ever, especially in the Asian region. The objective of this study is to produce a land cover classification dataset for the whole of Asia using the NOAA AVHRR 1-km dataset. Ground data were mainly collected from existing thematic maps which were obtained from members of the Land Cover Working Group (LCWG) of the Asian Association of Remote Sensing (AARS). Classification was mainly based on cluster analysis of the monthly ratio of surface temperature and Normalized Difference Vegetation Index (NDVI) for seven months from April to October 1992. Additional variables, such as DEM, the maximum monthly composite NDVI in a year, and the minimum monthly composite NDVI in a year were also used in the classification processing. In order to add and improve ground data in the future, collected ground data will be published with the developed land cover dataset.  相似文献   

15.
Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse region covering a wide range of climate zones and ecosystems: from arctic deserts, tundra, boreal forest, and wetlands, to semi-arid steppes and the deserts of Central Asia. In this study, we assessed four of the most recent global land cover datasets: GLC-2000, GLOBCOVER, and the MODIS Collection 4 and Collection 5 Land Cover Product using cross-comparison analyses and Landsat-based reference maps distributed throughout the region. A consistent comparison of these maps was challenging because of disparities in class definitions, thematic detail, and spatial resolution. We found that the choice of sampling unit significantly influenced accuracy estimates, which indicates that comparisons of reported global map accuracies might be misleading. To minimize classification ambiguities, we devised a generalized legend based on dominant life form types (LFT) (tree, shrub, and herbaceous vegetation, barren land and water). LFT served as a necessary common denominator in the analyzed map legends, but significantly decreased the thematic detail. We found significant differences in the spatial representation of LFT's between global maps with high spatial agreement (above 0.8) concentrated in the forest belt of Northern Eurasia and low agreement (below 0.5) concentrated in the northern taiga-tundra zone, and the southern dry lands. Total pixel-level agreement between global maps and six test sites was moderate to fair (overall agreement: 0.67-0.74, Kappa: 0.41-0.52) and increased by 0.09-0.45 when only homogenous land cover types were analyzed. Low map accuracies at our tundra test site confirmed regional disagreements and difficulties of current global maps in accurately mapping shrub and herbaceous vegetation types at the biome borders of Northern Eurasia. In comparison, tree dominated vegetation classes in the forest belt of the region were accurately mapped, but were slightly overestimated (10%-20%), in all maps. Low agreement of global maps in the northern and southern vegetation transition zones of Northern Eurasia is likely to have important implications for global change research, as those areas are vulnerable to both climate and socio-economic changes.  相似文献   

16.
We describe a new map of the central Africa region that was derived from National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA AVHRR) observations using a fusion of Local Area Coverage (LAC, 1 km), Global Area Coverage (GAC, 8 km), and ancillary information. The land cover map, produced for the Central Africa Regional Program for the Environment (CARPE), offers a synoptic view of the extent of central African dense humid forests, at relatively fine spatial resolution. Land cover types include dense humid forest, disturbed or degraded forest and various savanna classes. Ancillary information includes political and park boundaries, settlements, rivers and roads. Map validation was performed using a combination of field visits and finer resolution imagery (Landsat Multi-Spectral Scanner (MSS)). Forest cover type mapping errors were at most 20 per cent. The resulting map is useful for addressing a number of resource management issues, a few of which are examined.  相似文献   

17.
阿姆河三角洲作为典型干旱区,干旱胁迫和次生的盐胁迫决定了本地区生态环境的复杂性和独特性,给遥感地表覆盖制图带来一定的困难。在土地利用/覆盖(LULC)遥感图像分类任务中,数量大、质量高、成本低的样本和速度快、性能稳定的分类器是高效实现高精度分类的关键。在一些偏远地区开展土地利用/地表覆盖遥感图像分类依然面临着标记样本空间上稀疏、时间上不连续甚至是缺失,人工收集成本高等问题。为此,结合最优树集成和样本迁移的思想,构建了一种高效的地表覆盖自动更新的新方法。该方法通过变化检测在历史产品上的同期影像上进行样本标签的标记,并将过去的地表覆盖类型标签转移到同源目标影像上,使用最优树集成(Ensemble of optimum trees, OTE)完成地表覆盖自动分类。根据阿姆河三角洲地区地表覆盖分类试验结果,表明该方法可以提取有效的地表覆盖标签,并能较高精度发实现土地利用/地表覆盖的自动分类更新。  相似文献   

18.
Land cover is classified over East Asia using 250‐m Moderate Resolution Imaging Spectroradiometer (MODIS) land surface reflectance, MODIS snow cover and Operational Linescan System (OLS) human settlement data. The classification method includes a decision tree classification scheme that considers 11 kinds of land surface features derived from the OLS product and the time series of two MODIS products in 2000. The decision tree was defined manually based on the experiment because of insufficient training data, ease of tuning by visual interpretation, and extensibility to further research. The resulting classification is compared to three kinds of reference data, i.e. MODIS land cover product, Chinese digital land cover map, and Chinese census. The land cover classification can be input into a hydrological model applied to the Yellow River in China.  相似文献   

19.
在中国东北、华北、华中、华南、西北、青藏、内蒙古7个自然地区分别选择典型区A、B、C、D、E、F、G,以Landsat TM/ETM+影像分类结果为参考数据,采用亚分数混淆矩阵对5种大尺度土地覆盖数据集的精度进行定量评价,为数据集的使用提供科学依据。亚分数混淆矩阵可避免参考数据与待评价数据尺度转换时引入的误差,能反映不同优势类比重情况下数据集的总体精度和分类方法误差。结果表明:GLC2000在全部典型区的总体精度最高,为65.64%;UMD总体精度最低,为43.06%。GLC2000在主要土地覆盖类型为林地和耕地以及草地区域具有较高的分类精度;UMD在各区域的分类精度均最低或较低。5种土地覆盖数据集对于城镇、其他的分类精度在各典型区均较低;对于草地和水体的分类精度则是在西北干旱区和青藏高原区的典型区较高。  相似文献   

20.
A new global land cover database for the year 2000 (GLC2000) has been produced by an international partnership of 30 research groups coordinated by the European Commission's Joint Research Centre. The database contains two levels of land cover information—detailed, regionally optimized land cover legends for each continent and a less thematically detailed global legend that harmonizes regional legends into one consistent product. The land cover maps are all based on daily data from the VEGETATION sensor on‐board SPOT 4, though mapping of some regions involved use of data from other Earth observing sensors to resolve specific issues. Detailed legend definition, image classification and map quality assurance were carried out region by region. The global product was made through aggregation of these. The database is designed to serve users from science programmes, policy makers, environmental convention secretariats, non‐governmental organizations and development‐aid projects. The regional and global data are available free of charge for all non‐commercial applications from http://www.gvm.jrc.it/glc2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号