首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes 2 2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands. rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

2.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes ×2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands.

rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

3.
The compression and failure responses of four rootzone sand mixtures (with different types of particle shapes) were analyzed, compared, and modeled at two different moisture states (air dried and 30 cm tension). Differences in particle packing characteristics arising from particle shape and moisture were quantified. The air-dried and moist samples of the sand mixtures had initial bulk density (IBD) values ranging from 1.55 to 1.67g/cc and 1.23 to 1.48g/cc, respectively. The low IBD values observed for moist mixtures were attributed to the particle-particle agglomeration effects that take place in the presence of moisture. In addition, it was observed that the sand mixture's porosity increased with decreasing particle sphericity. During compression testing, moist samples underwent a greater volumetric deformation compared to the air-dried samples for the same pressure levels, e.g., at 69kPa, the volumetric strain of moist round sand mixtures was 8% higher than that of the air-dried round sand mixtures. Therefore, moisture acted as lubricant during volumetric compression of sand mixtures. Also, the bulk modulus values decreased with increasing moisture content and decreasing particle sphericity. During shear testing, the moist samples underwent a larger amount of strain deformation compared to the air-dried samples for the same stress difference values. This suggests that the presence of moisture makes the sand mixtures ductile during shear testing, unlike the usual brittle response in air-dried state. Shear modulus values linearly increased with the increase in mean pressure for the air-dried samples, whereas, for moist samples, the shear modulus values increased gradually or remained practically constant. The effect of pressure, moisture, and particle shape was also quantified for two elastoplastic parameters (consolidation and swelling indices). It was generally observed that the average consolidation index values decreased with pressure but increased with moisture and particle angularity. On the other hand, average swelling index values increased with pressure, moisture, and particle angularity. Overall, it was concluded that the moisture and particle shape had a decisive influence on the compression and shear profiles of continuous rootzone sand mixtures.  相似文献   

4.
The most important design parameters for roller presses can be referred to flow and compression characteristics of bulk materials. Usually the flow properties are measured in the low stress range 1–50 kPa at the shear rate of about 1 mm/min. But this does not fit the stress regimes in the roller press. Therefore, the compression and flow behavior of the powder have to be investigated at higher pressures, shear rates, and shear displacements. These properties of bulk materials in the so-called medium pressure range 50–1000 kPa can be analyzed using a press shear cell. Tests were implemented with limestone, bentonite, and microcrystalline cellulose at average 23°C powder bed temperature using shear rates from 0.00042 to 0.042 m/s and a more realistic preshear displacement from 0.1 to 2 m for practical applications in powder compaction. Physical observation based compression functions were developed for the low and medium pressure range, which include simple equations for the compression rate and specific compression work.  相似文献   

5.
The most important design parameters for roller presses can be referred to flow and compression characteristics of bulk materials. Usually the flow properties are measured in the low stress range 1-50 kPa at the shear rate of about 1 mm/min. But this does not fit the stress regimes in the roller press. Therefore, the compression and flow behavior of the powder have to be investigated at higher pressures, shear rates, and shear displacements. These properties of bulk materials in the so-called medium pressure range 50-1000 kPa can be analyzed using a press shear cell. Tests were implemented with limestone, bentonite, and microcrystalline cellulose at average 23°C powder bed temperature using shear rates from 0.00042 to 0.042 m/s and a more realistic preshear displacement from 0.1 to 2 m for practical applications in powder compaction. Physical observation based compression functions were developed for the low and medium pressure range, which include simple equations for the compression rate and specific compression work.  相似文献   

6.
Microbial induced calcite precipitation (MICP) is an environmentally friendly technology to bond sand particle together to form sandstone like materials. In this paper, MICP-treated bio-specimen was developed through MICP. The property of bio-specimen was compared with beams or bricks made through lime modification and cement modification. Ottawa sand was used in MICP-treated bio-specimen preparation. The proportion of lime or cement was in the range of 10–40% by weight of dry sand. The four-point bending tests, brick compression tests and unconfined compression tests were conducted. The test results indicated that flexure strength of MICP-treated bio-specimen was 950 kPa which was similar to flexure strength of 20–25% cement-treated sand beams, but was much higher than flexure strength of 30% lime-treated sand beams. The brick compression strength of MICP-treated bio-specimen achieved 500 kPa, which was similar to brick compression strength of 30% lime-treated sand bricks. The unconfined compression test results showed that the unconfined compression strength (UCS) of MICP-treated bio-specimen (1300 kPa) was higher than UCS of 10% cement-treated specimen (900 kPa), and much higher than UCS of lime-treated sample (around 140 kPa). The relative uniformity of precipitated CaCO3 distribution was achieved through the sample immersing preparation method. SEM images showed that failure pattern of MICP-treated, cement-treated and lime-treated specimens were bond-particle failure.  相似文献   

7.
Mechanical and physical properties of ground corn stover, switchgrass, and willow were measured and compared in addition to the quality of pellets. Biomass was size-reduced with two different screen sizes (3.175 and 6.35?mm) and conditioned to obtain samples at two different moisture contents (17.5 and 20% on wet basis). Ground switchgrass had the smallest and willow had the highest D50 when size-reduced with the same screen size. Hydrostatic triaxial compression tests were performed using the cubical triaxial tester to determine the bulk modulus, compression index, and spring-back index at specific unloading pressures (20, 45, 70, and 95?kPa). The trends of pressure vs. volumetric strain and void ratio vs. natural log of pressure were similar for all three materials; however, the magnitudes were different. Willow, size-reduced with 3.175?mm screen size at 17.5% wet basis, had the highest bulk modulus among different conditions of all the three biomass. Pellet durability values for all the three materials were higher than 80%. Corn stover pellets formed with 3.175?mm screen size at 20% wet basis had the highest diametral tensile and axial compressive strengths among different conditions for all the three biomass, however the values were not significantly different (p?>?0.05).  相似文献   

8.
The most important design parameters for roller presses can be referred to flow characteristic of bulk materials. Usually the flow properties are measured in the low stress range 1–50 kPa at the shear rate about 1 mm/min. But this does not fit the stressing conditions in the roller press. Press shear cell was used for shear tests with cohesive limestone powder from Gummern in the so-called medium pressure range 50–1000 kPa.  相似文献   

9.
砂土强度和剪胀性的颗粒力学分析   总被引:2,自引:0,他引:2  
砂土强度和剪胀性一直是土力学强度和变形研究的难点和重点,对其进一步认识的关键取决于对砂土颗粒状微观结构的洞察。砂土的颗粒性和散碎性使其适合采用颗粒力学来研究。该文从颗粒力学角度出发,利用平面离散元模拟砂土变形,建立并标定了砂土单元实验的一个颗粒力学模型。在此基础上,通过颗粒力学参数影响分析,研究了砂土无侧限双轴试验的三种表观强度指标(临界状态强度、峰值强度和特征应力强度)、剪胀性及剪切模量的颗粒力学影响因素。研究结果表明:砂土临界状态强度仅受砂土颗粒摩擦系数的影响,是材料属性,符合临界状态土力学理论;砂土峰值强度和特征应力强度不但与砂土颗粒摩擦系数相关,还与围压水平和相对密实度有关。峰值强度不受砂土颗粒自身刚度性质的影响,而特征应力强度受颗粒刚度性质的影响较大,但后者的影响规律不是简单的正比或反比的关系。砂土剪切模量主要受其颗粒自身刚度性质的影响,就目前研究来看,它与砂土相对密实度的关系并不显著。用颗粒力学方法对剪胀性的深入研究比较困难,主要是因为诸多颗粒力学参数(砂土颗粒摩擦系数和刚度、砂土样品的孔隙率及围压水平)均与之相关。该文尝试研究了砂土剪胀性与其颗粒转角的关系。最后,用该文标定的颗粒力学模型,研究了无重地基极限承载力普朗德尔-瑞斯纳问题,通过颗粒力学计算结果与普朗德尔-瑞斯纳解的对比,深化了对砂土地基极限承载力的理解,也为计算颗粒力学方法在岩土工程尺度上的应用提供了参考。  相似文献   

10.
罗茨水蒸气压缩机性能实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
压缩机是蒸气压缩蒸发系统的核心设备,会显著影响系统的能耗和运行稳定性.本文搭建了基于罗茨压缩机驱动的蒸气压缩蒸发实验台,蒸发温度为80~100℃,蒸发压力为46.60~101.64 kPa,压缩机压升为17.86~36.03 kPa,蒸发量为125.72~424.85 kg/h,实验研究了吸气流量、压缩比功、容积效率和...  相似文献   

11.
The pressure-volume analogy between compressible fluids and macroscopic sand bodies (Ivsic et al. in Phys A, 277:47–61, 2000) is further extended using quantitative determination of corresponding empirical constants based on adapted van der Waals state equation. The isothermal constants obtained by interpretation of triaxial sand tests at so called “critical state of sand” are clearly related to the universal ideal gas properties and molar properties of mineral sands. The corresponding constants for sand and gases or other volatile liquids have the same order of magnitude. The apparent bulk repulsion/attraction effects in sand bodies are also discussed.  相似文献   

12.
为研究掺砂量(与干土的质量比)对水泥粉质黏土冲击压缩强度及能量吸收特征的影响,采用Φ 50 mm分离式Hopkinson压杆(Split Hopkinson pressure bar,SHPB)试验装置对不同掺砂量的水泥粉质黏土进行了0.4 MPa冲击气压下的冲击压缩试验。结果表明:普通水泥粉质黏土(未掺砂)动态应力-应变曲线大致分为弹性阶段、屈服硬化阶段及破坏阶段,而随着掺砂量的逐渐增加,水泥砂浆固化粉质黏土动态应力-应变曲线中屈服阶段愈加不明显,出现了理想的塑性阶段;水泥砂浆固化粉质黏土的冲击压缩强度随掺砂量的增大而先增大后减小,在掺砂量为10%时达到最大平均动强度9.56 MPa,较普通水泥土强度提高9.79%;水泥砂浆固化粉质黏土的吸收能随冲击压缩强度的增大而增大,两者具有较好的指数关系。  相似文献   

13.
This paper examines the discrete element modelling of cyclic loading of an aggregate of crushable sand grains. Each grain of sand is modelled as an agglomerate of balls bonded together. The aggregate is subjected to compaction followed by isotropic normal (plastic) compression, and then unloaded to half the maximum applied stress. The aggregate is then subjected to cyclic loading to a maximum stress ratio of 0.8. The aim of the paper is to examine the reduction of the rate of axial strain with number of cycles, and to determine the relative influences of volumetric strain and shear strain rates on the axial strain rate. In particular, the paper aims to show whether particle breakage is mainly related to the accumulation of volumetric strain. This is found to be the case, which is consistent with proposals by other authors that plastic hardening under monotonic loading is due to particle fracture.  相似文献   

14.
The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2°. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.  相似文献   

15.
Highly compressible graphene aerogel are proposed as the promising electrode materials for compression-tolerant electrochemical capacitors. Herein, the polypyrrole (PPy) was introduced into the compressible graphene aerogel to further improve its specific capacitance and compression-tolerant ability. As-prepared graphene/PPy aerogel withstands 95% repeated compression cycling without any structure collapse. The gravimetric capacitance of the superelastic pseudocapacitors based on graphene/PPy aerogel electrodes reaches 335 F g?1 and can retain 97% even under 95% compressive strain. And a volumetric capacitance of 108 F cm?3 is achieved due to the significantly increased density of the electrodes under 95% strain. This value of the volumetric capacitance can be preserved by 85% after 3500 charge/discharge cycles with various compression conditions. This work will pave the way for advanced applications in the area of compressible energy-storage devices.  相似文献   

16.
Traffic loads and temperature variations produce three-dimensional stress–strain fields inside road pavements, and therefore the characterization of bituminous mixtures in different deformation modes is important for prediction of the performance of pavement structures. This paper presents a methodology for the bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain, under the hypothesis of material isotropy, by means of uniaxial harmonic tests with the measurement of axial and transverse strains. The theoretical approach was based on the application of the elastic–viscoelastic correspondence principle and was validated by performing tension–compression tests at selected frequencies and temperatures on asphalt concrete specimens characterized by different volumetric properties. The results showed that since uniaxial tests induced both volume and shape variations, the simultaneous measurement of the complex bulk and shear moduli was possible. The validity of the time–temperature superposition principle was also verified for both deformation modes, allowing the construction of master curves for the bulk and shear moduli. The results also showed that the total dissipated energy could be decomposed into its volumetric and deviatoric fractions with excellent accuracy.  相似文献   

17.
It will be practically useful to explore the evolutions of the failure modes of sand grains within a sand specimen subject to compression for the particle breakage research. This paper attempts to deal with this challenge by conducting a discrete element method (DEM) simulation study on oedometric compression of two kinds of sands (spherical and non-spherical particles). In this study, particle morphologies reconstructed by the spherical harmonic (SH) analysis were created using the agglomerate method, and the micro-parameters used to define the contact model and the properties of walls and balls were adopted based on the single particle crushing tests. The effects of particle shape on the crushing behavior of granular materials and on the evolutions of failure modes of sand grains were captured, and the experimental data was used to evaluate the feasibility and reliability of the proposed DEM modelling strategy. The simulation results show that particle shape affects not only the number, type and orientation of cracks but also the evolution of the particle failure modes. The failure mode of chipping is the most common way to crush for both spherical and non-spherical particles. The particles that have less aspect ratio, sphericity and convexity are more likely to experience the failure mode of comminution. These findings shed light on the key role of particle shape in the investigation of the failure mode of sand grains and facilitate a better understanding of grain-scale behavior of granular materials.  相似文献   

18.
A closed cell foam of polymetacrylimide (Rohacell) with three different densities is studied. The foam is tested quasistatically in tension, compression and shear. The tensile properties scale very well with the relative density of the foam, but the compression and shear properties do not scale the same way. It is believed to be due to cell edge and cell wall buckling being the dominated deformation mechanism in compression and shear for lower densities that does not occur for higher densities. Fatigue testing is then performed in tension, compression and shear. It is seen that for all load cases and densities, the fatigue life can be plotted using Basquin’s law. The results also show that the different failure mechanisms found in the static tests are the same in fatigue. This means that the fatigue life for different load types exhibit different failure mechanisms. This shows not only as a clear difference in the stress levels for fatigue failure, but also on the slope in the fatigue life relation.  相似文献   

19.
基于临界状态土力学框架,采用单应力变量法和双应力变量法非饱和土三剪强度准则,将原饱和土屈服函数中的屈服应力和破坏应力比分别替换成能反映土体饱和度影响的屈服应力和三剪破坏应力比,采用等量代换法和坐标平移法的三剪屈服函数推导出4种三剪弹塑性本构模型.所提本构模型能反映非饱和土全应力状态下土的强度区间效应、拉压强度差及黏聚力...  相似文献   

20.
Higher cement and fines content is needed in self-compacting mortars (SCMs) to increase their flowability and stability. Different inert fillers and supplementary cementitious materials are usually added. The use of sands rich in fines may be a cost effective alternative source of filler. This paper presents the results of an experimental study on the rheological and mechanical properties of self-compacting mortars (SCMs) made with various types of sands: crushed sand (CS), river sand (RS), dune sand (DS) and a mixture of different sands. The mini-slump flow, V-funnel flow time and viscosity measurement tests were used to study the rheological properties. The experimental results indicate that the rheological properties and strength improve with mixtures of crushed and river sands but decrease with mixtures of crushed and dune sands especially for higher dune sand content. Crushed sand with (10–15%) of limestone fines can be used successfully in production of SCM with good rheological and strength properties. However, a reduction in compressive strength with increasing dune sand content (up to 50%) in mortar with binary and ternary sands was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号