首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Converting environmental “waste energies” into electricity via a natural process is an ideal strategy for environmental energy harvesting and supplying power for distributed energy‐consuming devices. This paper reports that evaporation‐driven water flow within an all‐printed porous carbon film can reliably generate sustainable voltage up to 1 V with a power density of ≈8.1 µW cm?3 under ambient conditions. The output performance of the device can be easily scaled up and used to power low‐power consumption electronic devices or for energy storage. Furthermore, the device is successfully used without electric storage as a direct power source for electrodeposition of silver microstructures. Because of the ubiquity of water evaporation in nature and the low cost of materials involved, the study presents a novel avenue to harvest ambient energy and has potential applications in low‐cost, green, self‐powered devices and systems.  相似文献   

2.
Cellulose‐based triboelectric nanogenerators (TENGs) have gained increasing attention. In this study, a novel method is demonstrated to synthesize cellulose‐based aerogels and such aerogels are used to fabricate TENGs that can serve as mechanical energy harvesters and self‐powered sensors. The cellulose II aerogel is fabricated via a dissolution–regeneration process in a green inorganic molten salt hydrate solvent (lithium bromide trihydrate), where. The as‐fabricated cellulose II aerogel exhibits an interconnected open‐pore 3D network structure, higher degree of flexibility, high porosity, and a high surface area of 221.3 m2 g?1. Given its architectural merits, the cellulose II aerogel‐based TENG presents an excellent mechanical response sensitivity and high electrical output performance. By blending with other natural polysaccharides, i.e., chitosan and alginic acid, electron‐donating and electron‐withdrawing groups are introduced into the composite cellulose II aerogels, which significantly improves the triboelectric performance of the TENG. The cellulose II aerogel‐based TENG is demonstrated to light up light‐emitting diodes, charge commercial capacitors, power a calculator, and monitor human motions. This study demonstrates the facile fabrication of cellulose II aerogel and its application in TENG, which leads to a high‐performance and eco‐friendly energy harvesting and self‐powered system.  相似文献   

3.
Harvesting ambient mechanical energy is a key technology for realizing self‐powered electronics, which has tremendous applications in wireless sensing networks, implantable devices, portable electronics, etc. The currently reported triboelectric nanogenerator (TENG) mainly uses solid materials, so that the contact between the two layers cannot be 100% with considering the roughness of the surfaces, which greatly reduces the total charge density that can be transferred and thus the total energy conversion efficiency. In this work, a liquid‐metal‐based triboelectric nanogenerator (LM‐TENG) is developed for high power generation through conversion of mechanical energy, which allows a total contact between the metal and the dielectric. Due to that the liquid–solid contact induces large contacting surface and its shape adaptive with the polymer thin films, the LM‐TENG exhibits a high output charge density of 430 μC m?2, which is four to five times of that using a solid thin film electrode. And its power density reaches 6.7 W m?2 and 133 kW m?3. More importantly, the instantaneous energy conversion efficiency is demonstrated to be as high as 70.6%. This provides a new approach for improving the performance of the TENG for special applications. Furthermore, the liquid easily fluctuates, which makes the LM‐TENG inherently suitable for vibration energy harvesting.  相似文献   

4.
The development of efficient photodetectors (PDs) for ultraviolet (UV) light is of great importance for many applications. In this paper, a novel approach is proposed for boosting the performances of self‐powered PDs. Visible‐blind UV‐A PDs are built by combining a mesoporous TiO2 layer with a Spiro‐OMeTAD layer. The nanostructured heterointerface is engineered by inserting a self‐assembled layer of organic modifiers. By choosing 4‐nitrobenzoic acid (NBA), the responsivity is boosted by 70% compared to the pristine devices. It achieves 64 mA W?1 at 0 V bias, 380 nm, and 1 mW cm?2. The PD displays a very high sensitivity (>104), a fast response time (<3 ms), a high stability, and repeatability. 4‐chlorobenzoic acid, 4‐methoxy benzoic acid, 4‐nitro benzoic acid, and β‐alanine surface modifiers are studied by a combined experimental and theoretical approach. Their dipole moment is calculated. Their presence induces a step in the vacuum energy and the formed dipole field dramatically affects the charge transfer and then the photocurrent/photoresponse of the device. The higher responsivity of the NBA‐modified PD is thus explained by the better and faster electron charge transfer toward the electrical contact on TiO2.  相似文献   

5.
Improving the capacitance of carbon materials for supercapacitors without sacrificing their rate performance, especially volumetric capacitance at high mass loadings, is a big challenge because of the limited assessable surface area and sluggish electrochemical kinetics of the pseudocapacitive reactions. Here, it is demonstrated that “self‐doping” defects in carbon materials can contribute to additional capacitance with an electrical double‐layer behavior, thus promoting a significant increase in the specific capacitance. As an exemplification, a novel defect‐enriched graphene block with a low specific surface area of 29.7 m2 g?1 and high packing density of 0.917 g cm?3 performs high gravimetric, volumetric, and areal capacitances of 235 F g?1, 215 F cm?3, and 3.95 F cm?2 (mass loading of 22 mg cm?2) at 1 A g?1, respectively, as well as outstanding rate performance. The resulting specific areal capacitance reaches an ultrahigh value of 7.91 F m?2 including a “self‐doping” defect contribution of 4.81 F m?2, which is dramatically higher than the theoretical capacitance of graphene (0.21 F m?2) and most of the reported carbon‐based materials. Therefore, the defect engineering route broadens the avenue to further improve the capacitive performance of carbon materials, especially for compact energy storage under limited surface areas.  相似文献   

6.
In the field of bionics, sophisticated and multifunctional electronic skins with a mechanosensing function that are inspired by nature are developed. Here, an energy‐harvesting electronic skin (energy‐E‐skin), i.e., a pressure sensor with energy‐harvesting functions is demonstrated, based on fingerprint‐inspired conducting hierarchical wrinkles. The conducting hierarchical wrinkles, fabricated via 2D stretching and subsequent Ar plasma treatment, are composed of polydimethylsiloxane (PDMS) wrinkles as the primary microstructure and embedded Ag nanowires (AgNWs) as the secondary nanostructure. The structure and resistance of the conducting hierarchical wrinkles are deterministically controlled by varying the stretching direction, Ar plasma power, and treatment time. This hierarchical‐wrinkle‐based conductor successfully harvests mechanical energy via contact electrification and electrostatic induction and also realizes self‐powered pressure sensing. The energy‐E‐skin delivers an average output power of 3.5 mW with an open‐circuit voltage of 300 V and a short‐circuit current of 35 µA; this power is sufficient to drive commercial light‐emitting diodes and portable electronic devices. The hierarchical‐wrinkle‐based conductor is also utilized as a self‐powered tactile pressure sensor with a sensitivity of 1.187 mV Pa‐1 in both contact‐separation mode and the single‐electrode mode. The proposed energy‐E‐skin has great potential for use as a next‐generation multifunctional artificial skin, self‐powered human–machine interface, wearable thin‐film power source, and so on.  相似文献   

7.
The development of wearable and large‐area fabric energy harvester and sensor has received great attention due to their promising applications in next‐generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread‐based triboelectric nanogenerator (TENG) and its uses in elastically textile‐based energy harvesting and sensing have been demonstrated. The energy‐harvesting thread composed by one silicone‐rubber‐coated stainless‐steel thread can extract energy during contact with skin. With sewing the energy‐harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human‐motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread‐based self‐powered and active sensing uses, including gesture sensing, human‐interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single‐thread‐based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth‐based articles.  相似文献   

8.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

9.
Self‐assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore‐making strategy is introduced involving stimuli responsive protein‐polymer conjugates self‐assembled across a large surface area using drying‐mediated interfacial self‐assembly. The membrane is flexible and assembled on porous supports. The protein used is the cage protein ferritin and resides within the polymer matrix. Upon denaturation of ferritin, a pore is formed which intrinsically is determined by the size of the protein and how it resides in the matrix. Due to the self‐assembly at interfaces, the membrane constitutes of only one layer resulting in a membrane thickness of 7 nm on average in the dry state. The membrane is stable up to at least 50 mbar transmembrane pressure, operating at a flux of about 21 000–25 000 L m?2 h?1 bar?1 and displayed a preferred size selectivity of particles below 20 nm. This approach diversifies membrane technology generating a platform for “smart” self‐assembled membranes.  相似文献   

10.
Energy‐harvesting electronic skin (E‐skin) is highly promising for sustainable and self‐powered interactive systems, wearable human health monitors, and intelligent robotics. Flexible/stretchable electrodes and robust energy‐harvesting components are critical in constructing soft, wearable, and energy‐autonomous E‐skin systems. A stretchable energy‐harvesting tactile interactive interface is demonstrated using liquid metal nanoparticles (LM‐NPs)‐based electrodes. This stretchable energy‐harvesting tactile interface relies on triboelectric nanogenerator composed of a galinstan LM‐NP‐based stretchable electrode and patterned elastic polymer friction and encapsulation layer. It provides stable and high open‐circuit voltage (268 V), short‐circuit current (12.06 µA), and transferred charges (103.59 nC), which are sufficient to drive commercial portable electronics. As a self‐powered tactile sensor, it presents satisfactory and repeatable sensitivity of 2.52 V·kPa?1 and is capable of working as a touch interactive keyboard. The demonstrated stretchable and robust energy‐harvesting E‐skin using LM‐NP‐based electrodes is of great significance in sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.  相似文献   

11.
With the rapid advancement in artificial intelligence, wearable electronic skins have attracted substantial attention. However, the fabrication of such devices with high elasticity and breathability is still a challenge and highly desired. Here, a route to develop an all‐fiber structured electronic skin with a scalable electrospinning fabrication technique is reported. The fabricated electronic skin is demonstrated to exhibit high pressure sensing with a sensitivity of 0.18 V kPa?1 in the detection range of 0–175 kPa. This wearable device could maintain prominent sensing performance and mechanical stability in the presence of large deformation, even when the elastic deformation is up to 50%. The electronic skin is easily conformable on different desired objects for real‐time spatial mapping and long‐term tactile sensing. Besides, it possesses high gas permeability with a water vapor transmittance rate of 10.26 kg m?2 d?1. More importantly, the electronic skin is capable of working in a self‐powered manner and even serves as a reliable power source to effectively drive small electronics. Possessing several compelling features, such as high sensitivity, high elasticity, high breathability as well as being self‐powered and scalable in fabrication, the presented device paves a pathway for smart electronic skins.  相似文献   

12.
Large‐size 2D black phosphorus (BP) nanosheets have been successfully synthesized by a facile liquid exfoliation method. The as‐prepared BP nanosheets are used to fabricate electrodes for a self‐powered photodetector and exhibit preferable photoresponse activity as well as environmental robustness. Photoelectrochemical (PEC) tests demonstrate that the current density of BP nanosheets can reach up to 265 nA cm?2 under light irradiation, while the dark current densities fluctuate near 1 nA cm?2 in 0.1 M KOH. UV–vis and Raman spectra are carried out and confirm the inherent optical and physical properties of BP nanosheets. In addition, the cycle stability measurement exhibits no detectable distinction after processing 50 and 100 cycles, while an excellent on/off behavior is still preserved even after one month. Furthermore, the PEC performance of BP nanosheets‐based photodetector is evaluated in various KOH concentrations, which demonstrates that the as‐prepared BP nanosheets may have a great potential application in self‐powered photodetector. It is anticipated that the present work can provide fundamental acknowledgement of the performance of a PEC‐type BP nanosheets‐based photodetector, offering extendable availabilities for 2D BP‐based heterostructures to construct high‐performance PEC devices.  相似文献   

13.
A novel three‐electrode electrolyte supercapacitor (electric double‐layer capacitor [EDLC]) architecture in which a symmetrical interdigital “working” two‐electrode micro‐supercapacitor array (W‐Cap) is paired with a third “gate” electrode that reversibly depletes/injects electrolyte ions into the system controlling the “working” capacity effectively is described. All three electrodes are based on precursor‐derived nanoporous carbons with well‐defined specific surface area (735 m2 g?1). The interdigitated architecture of the W‐Cap is precisely manufactured using 3D printing. The W‐Cap operating with a proton conducting PVA/H2SO4‐hydrogel electrolyte and high capacitance (6.9 mF cm?2) can be repeatedly switched “on” and “off”. By applying a low DC bias potential (?0.5 V) at the gate electrode, the AC electroadsorption in the coupled interdigital nanoporous carbon electrodes of the W‐Cap is effectively suppressed leading to a stark capacity drop by two orders of magnitude from an “on” to an “off” state. The switchable micro‐supercapacitor is the first of its kind. This general concept is suitable for implementing a broad range of nanoporous materials and advanced electrolytes expanding its functions and applications in future. The integration of intelligent functions into EDLC devices has extensive implications for diverse areas such as capacitive energy management, microelectronics, iontronics, and neuromodulation.  相似文献   

14.
Multifunctional electronic textiles (e‐textiles) incorporating miniaturized electronic devices will pave the way toward a new generation of wearable devices and human–machine interfaces. Unfortunately, the development of e‐textiles is subject to critical challenges, such as battery dependence, breathability, satisfactory washability, and compatibility with mass production techniques. This work describes a simple and cost‐effective method to transform conventional garments and textiles into waterproof, breathable, and antibacterial e‐textiles for self‐powered human–machine interfacing. Combining embroidery with the spray‐based deposition of fluoroalkylated organosilanes and highly networked nanoflakes, omniphobic triboelectric nanogenerators (RF‐TENGs) can be incorporated into any fiber‐based textile to power wearable devices using energy harvested from human motion. RF‐TENGs are thin, flexible, breathable (air permeability 90.5 mm s?1), inexpensive to fabricate (<0.04$ cm?2), and capable of producing a high power density (600 µW cm?2). E‐textiles based on RF‐TENGs repel water, stains, and bacterial growth, and show excellent stability under mechanical deformations and remarkable washing durability under standard machine‐washing tests. Moreover, e‐textiles based on RF‐TENGs are compatible with large‐scale production processes and exhibit high sensitivity to touch, enabling the cost‐effective manufacturing of wearable human–machine interfaces.  相似文献   

15.
An efficient vapor‐activated power generator based on a 3D polypyrrole (PPy) framework was demonstrated for the first time. By constructing the anions gradient in the PPy, this specially designed PPy framework provided free ionic gradient with the assistant of absorbing water vapor to promote the spontaneous transport of ionic charge carriers, thus leading to the intermittent electric output with the change of external water vapor. A high voltage output of ≈60 mV and power density output of ≈6.9 mW m?2 were achieved under the moisture environment. More interestingly, it also exhibited power generation behaviors upon exposure to most of organic or inorganic vapors, indicating the potential new type of self‐powered vapor sensors for practical applications.  相似文献   

16.
Despite the tremendous advancement of intelligent robots, it remains a great challenge to integrate living organisms‐like multistimuli responsive actuation and excellent self‐healing ability into one single material system, which will greatly benefit and broaden the development of smart biomimetic materials. Herein, a novel self‐healable multistimuli responsive actuator is developed based on hierarchical structural design and interfacial supramolecular crosslinking. The resulting biomimetic actuator shows a record high photothermal efficiency (ηPT = 79.1%) and thermal conductivity (31.92 W m?1 K?1), and presents a superfast actuating response (near‐infrared light: 0.44 s; magnetic field: 0.36 s). In addition, the supramolecular crosslinking endows excellent self‐healing performance in both mechanical and actuating properties to the material. This biomimetic actuator with its hierarchical structure design provides great potential for various applications, such as artificial muscles, soft robotics, and biomedical microdevices.  相似文献   

17.
Self‐powered perovskite photodetectors mainly adopt the vertical heterojunction structure composed of active layer, electron–hole transfer layers, and electrodes, which results in the loss of incident light and interfacial accumulation of defects. To address these issues, a self‐powered lateral photodetector based on CsPbI3–CsPbBr3 heterojunction nanowire arrays is designed on both a rigid glass and a flexible polyethylene naphthalate substrate using an in situ conversion and mask‐assisted electrode fabrication method. Through adding the polyvinyl pyrrolidone and optimizing the concentration of precursors under the pressure‐assisted moulding process, both the crystallinity and stability of perovskite nanowire array are improved. The nanowire array–based lateral device shows a high responsivity of 125 mA W?1 and a fast rise and decay time of 0.7 and 0.8 ms under a self‐powered operation condition. This work provides a new strategy to fabricate perovskite heterojunction nanoarrays towards self‐powered photodetection.  相似文献   

18.
As electrical energy storage and delivery devices, carbon‐based electrical double‐layer capacitors (EDLCs) have attracted much attention for advancing the energy‐efficient economy. Conventional methods for activated carbon (AC) synthesis offer limited control of their surface area and porosity, which results in a typical specific capacitance of 70–120 F g?1 in commercial EDLCs based on organic electrolytes and ionic liquids (ILs). Additionally, typical ACs produced from natural precursors suffer from the significant variation of their properties, which is detrimental for EDLC use in automotive applications. A novel method for AC synthesis for EDLCs is proposed. This method is based on direct activation of synthetic polymers. The proposed procedure allowed us to produce ACs with ultrahigh specific surface area of up to 3432 m2 g?1 and volume of 0.5–4 nm pores up to 2.39 cm3 g?1. The application of the produced carbons in EDLCs based on IL electrolyte showed specific capacitance approaching 300 F g?1, which is unprecedented for carbon materials, and 5–8% performance improvement after 10 000 charge–discharge cycles at the very high current density of 10 A g?1. The remarkable characteristics of the produced materials and the capability of the fabricated EDLCs to operate safely in a wide electrochemical window at elevated temperatures, suggest that the proposed synthesis route offers excellent potential for large‐scale material production for EDLC use in electric vehicles and industrial applications.  相似文献   

19.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   

20.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号