首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report demonstrates a wearable elastomer‐based electronic skin including resistive sensors for monitoring finger articulation and capacitive tactile pressure sensors that register distributed pressure along the entire length of the finger. Pressure sensitivity in the order of 0.001 to 0.01 kPa?1 for pressures from 5 to 405 kPa, which includes much of the range of human physiological sensing, is achieved by implementing soft, compressible silicone foam as the dielectric and stretchable thin‐metal films. Integrating these sensors in a textile glove allows the decoupling of the strain and pressure cross‐sensitivity of the tactile sensors, enabling precise grasp analysis. The sensorized glove is implemented in a human‐in‐the‐loop system for controlling the grasp of objects, a critical step toward hand prosthesis with integrated sensing capabilities.  相似文献   

2.
Porous polymeric foams as dielectric layer for highly sensitive capacitive based pressure sensors have been extensively explored owing to their excellent flexibility and elasticity. Despite intensive efforts, most of previously reported porous polymer foams still suffer from difficulty in further lowering the attainable density limit of ≈0.1 g cm?3 while retaining high sensitivity and compressibility due to the limitations on existing fabrication techniques and materials. Herein, utilizing 3D interconnected networks of few‐layer hexagonal boron nitride foams (h‐BNFs) as supporting frameworks, lightweight and highly porous BN/polydimethylsiloxane composite foams (BNF@PDMS) with densities reaching as low as 15 mg cm?3 and permittivity close to that of air are fabricated. This is the lightest PDMS‐based foam reported to date. Owing to the synergistic effects between BN and PDMS, these lightweight composite foams possess excellent mechanical resilience, extremely high compressibility (up to 95% strain), good cyclic performance, and superelasticity. Being electrically nonconductive, the potential application of BNF@PDMS as a dielectric layer for capacitive sensors is further demonstrated. Remarkably, the as‐fabricated device can perform multiple sensing functions such as noncontact touch sensor, environmental monitoring sensor, and high sensitivity pressure sensor that can detect extremely low pressures of below 1 Pa.  相似文献   

3.
Highly conductive and stretchable fibers are crucial components of wearable electronics systems. Excellent electrical conductivity, stretchability, and wearability are required from such fibers. Existing technologies still display limited performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer‐wrapped carbon nanotube fibers, is proposed. The sensors attain high sensitivity (with a gauge factor of 425 at 100% strain), high stretchability, and high linearity. They are also reproducible and durable. Their use as safe sensing components on deformable cable, expandable surfaces, and wearable textiles is demonstrated.  相似文献   

4.
Soft and stretchable sensors have the potential to be incorporated into soft robotics and conformal electronics. Liquid metals represent a promising class of materials for creating these sensors because they can undergo large deformations while retaining electrical continuity. Incorporating liquid metal into hollow elastomeric capillaries results in fibers that can integrate with textiles, comply with complex surfaces, and be mass produced at high speeds. Liquid metal is injected into the core of hollow and extremely stretchable elastomeric fibers and the resulting fibers are intertwined into a helix to fabricate capacitive sensors of torsion, strain, and touch. Twisting or elongating the fibers changes the geometry and, thus, the capacitance between the fibers in a predictable way. These sensors offer a simple mechanism to measure torsion up to 800 rad m?1—two orders of magnitude higher than current torsion sensors. These intertwined fibers can also sense strain capacitively. In a complementary embodiment, the fibers are injected with different lengths of liquid metal to create sensors capable of distinguishing touch along the length of a small bundle of fibers via self‐capacitance. The three capacitive‐based modes of sensing described here may enable new sensing applications that employ the unique attributes of stretchable fibers.  相似文献   

5.
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa?1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated.  相似文献   

6.
Localizing machine‐type communication (MTC) devices or sensors is becoming important because of the increasing popularity of machine‐to‐machine (M2M) communication networks for location‐based applications. These include such as health monitoring, rescue operations, vehicle tracking, and wildfire monitoring. Moreover, efficient localization approaches for sensor‐based MTC devices reduce the localization error and energy consumption of MTC devices. Because sensors are used as an integral part of M2M communication networks and have achieved popularity in underwater applications, research is being conducted on sensor localization in both underwater and terrestrial M2M networks. Major challenges in designing underwater localization techniques are the lack of good radio signal propagation in underwater, sensor mobility management, and ensuring network coverage in 3D underwater M2M networks. Similarly, predicting the mobility pattern of MTC devices, trading‐off energy consumption and location accuracy pose great design challenges for terrestrial localization techniques. This article presents a comprehensive survey on the current state‐of‐the‐art research on both terrestrial and underwater localization approaches for sensor‐based MTC devices. It also classifies localization approaches based on several factors, identifies their limitations with potential solutions, and compares them. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Soft pressure sensors are one class of the essential devices for robotics and wearable device applications. Despite the tremendous progress, sensors that can reliably detect both positive and negative pressures have not yet been demonstrated. In this paper, a soft capacitive pressure sensor, made using a convenient and low‐cost screen‐printing process that can reliably detect both positive and negative pressures from ?60 to 20 kPa, is reported. The sensor is made with an Ecoflex‐0030 dielectric layer, conductive and stretchable poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (with ionic additives) electrodes, and polydimethylsiloxane encapsulation layers. Air gaps are designed and incorporated into the dielectric layer to significantly enhance the sample deformation and pressure response especially to negative pressure. The sensor exhibits repeatable response for thousands of cycles, even under bending or stretching conditions. Lastly, to demonstrate the practical application, a 12 × 12‐pixel sensor array that can automatically measure both positive and negative pressure distributions has been reported under ?20 and 10 kPa.  相似文献   

8.
Highly sensitive and selective chemiresistive sensors based on graphene functionalized by metals and metal oxides have attracted considerable attention in the fields of environmental monitoring and medical assessment because of their ultrasensitive gas detecting performance and cost‐effective fabrication. However, their operation, in terms of detection limit and reliability, is limited in traditional applications because of ambient humidity. Here, the enhanced sensitivity and selectivity of single‐stranded DNA‐functionalized graphene (ssDNA‐FG) sensors to NH3 and H2S vapors at high humidity are demonstrated and their sensing mechanism is suggested. It is found that depositing a layer of ssDNA molecules leads to effective modulation of carrier density in graphene, as a negative‐potential gating agent and the formation of an additional ion conduction path for proton hopping in the layer of hydronium ions (H3O+) at high humidity (>80%). Considering that selectively responsive chemical vapors are biomarkers associated with human diseases, the obtained results strongly suggest that ssDNA‐FG sensors can be the key to developing a high‐performance exhaled breath analyzer for diagnosing halitosis and kidney disorder.  相似文献   

9.
Stretchable physical sensors that can detect and quantify human physiological signals such as temperature, are essential to the realization of healthcare devices for biomedical monitoring and human–machine interfaces. Despite recent achievements in stretchable electronic sensors using various conductive materials and structures, the design of stretchable sensors in optics remains a considerable challenge. Here, an optical strategy for the design of stretchable temperature sensors, which can maintain stable performance even under a strain deformation up to 80%, is reported. The optical temperature sensor is fabricated by the incorporation of thermal‐sensitive upconversion nanoparticles (UCNPs) in stretchable polymer‐based optical fibers (SPOFs). The SPOFs are made from stretchable elastomers and constructed in a step‐index core/cladding structure for effective light confinements. The UCNPs, incorporated in the SPOFs, provide thermal‐sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing by near‐infrared excitation, while the SPOFs endow the sensor with skin‐like mechanical compliance and excellent light‐guiding characteristics for laser delivery and emission collection. The broad applications of the proposed sensor in real‐time monitoring of the temperature and thermal activities of the human body, providing optical alternatives for wearable health monitoring, are demonstrated.  相似文献   

10.
A technology is developed for making single-chip diaphragm pressure sensors with polycrystalline-silicon piezoresistive elements on a monocrystalline-silicon substrate. It allows one to produce piezoresistive elements with a conductivity–temperature characteristic that neutralizes the temperature dependence of piezoresistive sensitivity. Sensors with a 1.8 × 1.8-mm2 diaphragm are designed and fabricated by the above technology for pressures ranging from 1 to 105 Pa, showing a maximum sensitivity of 10–6 Pa–1. The sensors are tested in aerodynamic experiments on monitoring the flow past a model wing of finite span at angles of attack close to the stall angle.  相似文献   

11.
Pressure sensors have attracted tremendous attention because of their potential applications in the fields of health monitoring, human–machine interfaces, artificial intelligence, and so on. Improving pressure‐sensing performances, especially the sensitivity and the detection limit, is of great importance to expand the related applications, however it is still an enormous challenge so far. Herein, highly sensitive piezoresistive pressure sensors are reported with novel light‐boosting sensing performances. Rose petal–templated positive multiscale millimeter/micro/nanostructures combined with surface wrinkling nanopatterns endow the assembled pressure sensors with outstanding pressure sensing performance, e.g. an ultrahigh sensitivity (70 KPa?1, <0.5 KPa), an ultralow detection limit (0.88 Pa), a wide pressure detect ion range (from 0.88 Pa to 32 KPa), and a fast response time (30 ms). Remarkably, simple light illumination further enhances the sensitivity to 120 KPa?1 (<0.5 KPa) and lowers the detection limit to 0.41 Pa. Furthermore, the flexible light illumination offers unprecedented capabilities to spatiotemporally control any target in multiplexed pressure sensors for optically enhanced/tailorable sensing performances. This light‐control strategy coupled with the introduction of bioinspired multiscale structures is expected to help design next generation advanced wearable electronic devices for unprecedented smart applications.  相似文献   

12.
Development of next‐generation sensor devices is gaining tremendous attention in both academia and industry because of their broad applications in manufacturing processes, food and environment control, medicine, disease diagnostics, security and defense, aerospace, and so forth. Current challenges include the development of low‐cost, ultrahigh, and user‐friendly sensors, which have high selectivity, fast response and recovery times, and small dimensions. The critical demands of these new sensors are typically associated with advanced nanoscale sensing materials. Among them, graphene and its derivatives have demonstrated the ideal properties to overcome these challenges and have merged as one of the most popular sensing platforms for diverse applications. A broad range of graphene assemblies with different architectures, morphologies, and scales (from nano‐, micro‐, to macrosize) have been explored in recent years for designing new high‐performing sensing devices. Herein, this study presents and discusses recent advances in synthesis strategies of assembled graphene‐based superstructures of 1D, 2D, and 3D macroscopic shapes in the forms of fibers, thin films, and foams/aerogels. The fabricated state‐of‐the‐art applications of these materials in gas and vapor, biomedical, piezoresistive strain and pressure, heavy metal ion, and temperature sensors are also systematically reviewed and discussed, and their sensing performance is compared.  相似文献   

13.
Organic thin‐film transistors (OTFTs) can provide an effective platform to develop flexible pressure sensors in wearable electronics due to their good signal amplification function. However, it is particularly difficult to realize OTFT‐based pressure sensors with both low‐voltage operation and high sensitivity. Here, controllable polyelectrolyte composites based on poly(ethylene glycol) (PEG) and polyacrylic acid (PAA) are developed as a type of high‐capacitance dielectrics for flexible OTFTs and ultrasensitive pressure sensors with sub‐1 V operation. Flexible OTFTs using the PAA:PEG dielectrics show good universality and greatly enhanced electrical performance under a much smaller operating voltage of ?0.7 V than those with a pristine PAA dielectric. The low‐voltage OTFTs also exhibit excellent flexibility and bending stability under various bending radii and long cycles. Flexible OTFT‐based pressure sensors with low‐voltage operation and superhigh sensitivity are demonstrated by using a suspended semiconductor/dielectric/gate structure in combination with the PAA:PEG dielectric. The sensors deliver a record high sensitivity of 452.7 kPa?1 under a low‐voltage of ?0.7 V, and excellent operating stability over 5000 cycles. The OTFT sensors can be built into a wearable sensor array for spatial pressure mapping, which shows a bright potential in flexible electronics such as wearable devices and smart skins.  相似文献   

14.
A platform is introduced for pressure‐mediated chemiresistive glucose sensing based on a 2D array of glucose‐conjugating silver nanowire (AgNW)‐deposited conductive microparticles (AgCMPs). Glucose‐conjugating AgCMPs, as transducers of the sensors, are fabricated by decorating the surface of monodisperse polyurethane elastomeric MPs with AgNWs by layer‐by‐layer deposition. Then, the AgNWs are covalently bonded to 4‐mercaptophenylboronic acid (4‐MPBA) to endow them with chemiresistive glucose sensing property against the applied pressure. The 4‐MPBA‐functionalized AgCMPs are positioned with high accuracy on a hole‐patterned stencil film placed between electrodes. Using this sensor system, it is shown that the current induced by the application of constant pressure to the sensor film at a given supply voltage varies linearly with the glucose concentration before and after critical glucose bridging concentration. Notably, the AgCMP‐based chemiresistive sensors could detect glucose over a wide concentration range from 0.56 × 10?6 m to 56 × 10?3 m with remarkable sensitivity and selectivity.  相似文献   

15.
There is an increasing demand for sensitive, flexible, and low‐cost pressure sensing solutions for health monitoring, wearable sensing, robotic and prosthetic applications. Here, the first flexible and pressure‐sensitive microfluidic film is reported, referred to as a microflotronic, with high transparency and seamless integratability with the state‐of‐the‐art microelectronics. The microflotronic film represents the initial effort to utilize a continuous microfluidic layer as the sensing elements for large‐area dynamic pressure mapping applications, and meanwhile an ultrahigh sensitivity of 0.45 kPa?1 has been achieved in a compact, flexible, and transparent packaging. The response time of the device is in the millisecond range, which is at least an order of magnitude faster than that of its conventional flexible solid‐state counterparts. In addition, the fabrication process of the device is fully compatible with the industrial‐scale manufacturing of capacitive touchscreen devices and liquid‐crystal displays. The overall device packaging can be as thin as 200 μm with an optical transparency greater than 80%. Several practical applications were successfully demonstrated, including surface topology mapping and dynamic blood pressure monitoring. The microflotronic devices offer an alternative approach to the solid‐state pressure sensors, by offering an unprecedented sensitivity and ultrafast response time in a completely transparent, flexible and adaptive platform.  相似文献   

16.
In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer‐thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10?3 mbar?1 while maintaining an overall small membrane area. Furthermore, by combining micro‐bulge tests with atomic force microscopy and in situ resistance measurements the membranes’ electromechanical responses are studied through precise observation of the concomitant changes of the membranes’ topography. The study demonstrates the high potential of free‐standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.  相似文献   

17.
Sensing of mechanical motion based on flexible electromagnetic sensors is challenging due to the complexity of obtaining flexible magnetic membranes with confined and enhanced magnetic fields. A fully flexible electromechanical system (MEMS) sensor is developed to conduct wearable monitoring of mechanical displacement with excellent adaptability to complex surface morphology through a suspended flexible magnet enclosed within a novel setup formed by a multi‐layer flexible coil and annular origami magnetic membranes. The annular membranes not only regulate the overall distribution of the magnetic field and enhance the overall magnetism by 291%, but also greatly increase the range of the magnetic field to cover the entire region of the coil. The sensor offers a broad frequency response ranging from 1 Hz to 10 kHz and a sensitivity of 0.59 mV µm?1 at 1.7 kHz. The fully flexible format of the sensor enables various applications demonstrated by biophysical sensing, motion detection, voice recognition, and machine diagnostics through direct attachment on soft and curvilinear surfaces. Similar sensors can combine multiple sensing and energy harvesting modalities to achieve battery‐less and self‐sustainable operation, and can be deployed in large numbers to conduct distributed sensing for machine status assessment, health monitoring, rehabilitation, and speech aid.  相似文献   

18.
19.
It is a challenge to manufacture pressure‐sensing materials that possess flexibility, high sensitivity, large‐area compliance, and capability to detect both tiny and large motions for the development of artificial intelligence products. Herein, a very simple and low‐cost approach is proposed to fabricate versatile pressure sensors based on microcrack‐designed carbon black (CB)@polyurethane (PU) sponges via natural polymer‐mediated water‐based layer‐by‐layer assembly. These sensors are capable of satisfying the requirements of ultrasmall as well as large motion monitoring. The versatility of these sensors benefits from two aspects: microcrack junction sensing mechanism for tiny motion detecting (91 Pa pressure, 0.2% strain) inspired by the spider sensory system and compressive contact of CB@PU conductive backbones for large motion monitoring (16.4 kPa pressure, 60% strain). Furthermore, these sensors exhibit excellent flexibility, fast response times (<20 ms), as well as good reproducibility over 50 000 cycles. This study also demonstrates the versatility of these sensors for various applications, ranging from speech recognition, health monitoring, bodily motion detection to artificial electronic skin. The desirable comprehensive performance of our sensors, which is comparable to the recently reported pressure‐sensing devices, together with their significant advantages of low‐cost, easy fabrication, especially versatility, makes them attractive in the future of artificial intelligence.  相似文献   

20.
Target localization and tracking are two of the critical tasks of sensor networks in many applications. Conventional localization and tracking techniques developed for wireless systems that rely on direction‐of‐arrival (DOA) or time‐of‐arrival (TOA) information are not suitable for low‐power sensors with limited computation and communication capabilities. In this paper, we propose a low‐complexity and energy‐efficient method for target localization and tracking in noisy binary sensor networks, where the sensors can only perform binary detection, and the physical links are characterized by additive white Gaussian noise (AWGN) channels. The proposed method is based on known spatial topology. An efficient wake‐up strategy is used to activate a particular group of sensors for cooperative localization and tracking. We analyze the localization error probability and tracking miss probability in the presence of prediction errors. Simulation results validate the theoretic analysis and demonstrate the effectiveness of the proposed approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号