首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3D programmable materials are highly interesting and have a great potential to enable smart robotic devices. Stimuli‐responsive liquid crystal polymer networks (LCNs) offer an attractive platform for the design and fabrication of 3D programmable materials. To date, extensive efforts have been devoted to the design of 3D programmable LCNs by spatially modulating the orientation of liquid crystals. However, the practical application of LCN actuators has been elusive, partly due to tedious orientation technology and monotonous geometry. To resolve this issue, programmable 3D shape changes achieved in LCNs with uniaxial orientation and homogenous composition using a mechanical programming process inspired by the “programming process” of shape‐memory polymers are reported. The mechanical programming process is suitable for LCNs with distinct geometries, for example, the film and fiber, suggesting a promising way for the design of 3D programmable LCN actuators with complex geometries, and deformation profiles (buckle, helix, horn).  相似文献   

2.
High‐strain, high‐force mechanical actuation technologies are desirable for numerous applications ranging from microelectromechanical systems (MEMS) to large‐scale “smart structures” that are able to change shape to optimize performance. Here we show that electrochemical intercalation of inorganic compounds of high elastic modulus offers a low‐voltage mechanism (less than 5 V) with intrinsic energy density approaching that of hydraulics and more than a hundred times greater than that of existing field‐operated mechanisms, such as piezostriction and magnetostriction. Exploitation of the reversible crystallographic strains (several percent) of intercalation compounds while under high stress is key to realization of the available energy. Using a micromachined actuator design, we test the strain capability of oriented graphite due to electrochemical lithiation under stresses up to 200 MPa. We further demonstrate that simultaneous electrochemical expansion of the LiCoO2/graphite cathode/anode couple can be exploited for actuation under stresses up to ~ 20 MPa in laminated macroscopic composite actuators of similar design to current lithium‐ion batteries. While the transport‐limited actuation mechanism of these devices results in intrinsically slower actuation compared to most ferroic materials, we demonstrate up to 6.7 mHz (150 s) cyclic actuation in a laminated actuator designed for a high charge/discharge rate. The potential for a new class of high‐strain, high‐force, moderate‐frequency actuators suitable for a broad range of applications is suggested.  相似文献   

3.
Recent advances in miniature robotics have brought promising improvements in performance by leveraging the latest developments in soft materials, new fabrication schemes, and continuum actuation. Such devices can be used for applications that need delicate manipulation such as microsurgery or investigation of small‐scale biological samples. The shape memory effect of certain alloys is one of the promising actuation mechanisms at small scales because of its high work density and simple actuation mechanism. However, for sub‐millimeter devices, it is difficult to achieve complex and large displacement with shape memory alloy actuators because of the limitation in the fabrication process. Herein, a fabrication scheme for miniaturized smart soft composite actuator is proposed by utilizing two‐photon polymerization. The morphing modes are varied by changing the direction of the scaffold lamination. In addition, the actuation is controlled via local resistive heating of a carbon nanotube layer deposited inside of the actuators. The proposed design can generate a 390 µN force and achieve a bending angle up to 80°. Applications of the actuators are demonstrated by grasping small and delicate objects with single and two finger devices.  相似文献   

4.
MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene-based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum-confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture-assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof-of-concept demonstrations, various intriguing applications including a dual-role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics.  相似文献   

5.
Dielectrophoresis is the electro-mechanical phenomenon where a force is generated on a dielectric material when exposed to a non-uniform electric field. It has potential to be exploited in smart materials for robotic manipulation and locomotion, but to date it has been sparsely studied in this area. Herein, a new type of dielectrophoretic actuator exploiting a novel electroactive polymer is described, termed as dielectrophoretic elastomer (DPE), which undergoes electric field-driven actuation through dielectrophoresis. Unique deflection and morphing behavior of the elastomer induced by controlling the dielectrophoretic phenomenon, such as out-of-plane deformation and independence of electric field polarity, are illustrated. The dielectric and mechanical properties of the DPE are studied to gain insight into the influence of materials composition on deformation. Actuation performance using different electrode parameters is experimentally investigated with supplementary analysis through finite element simulation, revealing the relationship between electric field inhomogeneity and deflection. The applications of DPE actuators in a range of robotic devices is demonstrated, including a pump, an adjustable optical lens, and a walking robot. This diverse range of applications illustrates the wide potential of these new soft-and-smart electric field-driven materials for use in soft robotics and soft compliant devices.  相似文献   

6.
Direct light-to-work conversion enables remote actuation through a non-contact manner, among which the photothermal Marangoni effect is significant for developing light-driven robots because of the diversity of applicable photothermal materials and light sources, as well as the high energy conversion efficiency. However, the lack of nanotechnologies that enable flexible integration of advanced photothermal materials with actuators of complex configurations significantly restricts their practical applications. In this paper, laser-induced graphene (LIG) tape is reported as stick-on photothermal labels for developing light-driven actuators based on the Marangoni effect. With the help of direct laser writing technology, graphene patterns with superior photothermal properties are prepared on the PI tape. The patterned LIG tape can be stuck on any desired objects and generates an asymmetric photothermal field under light irradiation, forming a photothermal Marangoni actuator. Additionally, the PI tape with LIG patterns can be folded into 3D origami actuators that permit photothermal Marangoni actuation including both translation and rotation. The graphene-based photothermal Marangoni actuators feature biocompatibility, which is confirmed by MDA-MB-231 cells proliferation experiments. Owing to the excellent photothermal property of LIG patterns, the as-produced photothermal actuators can be manipulated by a variety of light sources, holding great promise for developing light-driven soft robots.  相似文献   

7.
Artificial intelligent actuators are extensively explored for emerging applications such as soft robots, human-machine interfaces, and biomedical devices. However, intelligent actuating systems based on synthesized polymers suffer from challenges in renewability, sustainability, and safety, while natural polymer-based actuators show limited capabilities and performances due to the presence of abundant hydrogen-bond lockers. Here this study reports a new hydrogen bond-mediated strategy to develop mimosa-inspired starch actuators (SA). By harnessing the unique features of gelatinization and abundant hydrogen bonds, these SA enable high-sensitivity and multi-responsive actuation in various scenarios. The non-gelatinized SA can be irreversibly programmed into diverse shapes, such as artificial flowers, bowl shapes, and helix structures, using near-infrared light. Furthermore, the gelatinized SA exhibit reversibly multi-responsive actuation when exposed to low humidity (10.2%), low temperature (37 °C), or low-energy light (0.42 W cm−2). More importantly, the SA demonstrate robust applications in smart living, including artificial mimosa, intelligent lampshade, and morphing food. By overcoming the hydrogen-bond lockers inherent in natural polymers, SA open new avenues for next-generation recyclable materials and actuators, bringing them closer to practical applications.  相似文献   

8.
Design and fabrication of photomechanical soft actuators has attracted intense scientific interest because of their potential in the manufacture of untethered intelligent soft robots and advanced functional devices. Trifunctional and monofunctional polymerizable molecular motors are judiciously designed and synthesized. Novel light‐driven liquid crystalline networks (LCN) are prepared by crosslinking overcrowded‐alkene‐based molecular motors with different degrees of freedom into the anisotropic LCN. The photoisomerization and thermal helix inversion of light‐driven molecular motors are reversible when only the upper part of the molecular motor is linked to the network, endowing the LCN film with remarkable photoactive performance. However, photochemical geometric change of the light‐driven molecular motor does not work after crosslinking both the upper and lower part of the motor by polymer chains. Interestingly, it is found that the fastened motor can transfer the light energy into localized heat instead of performing photoisomerization. The light‐driven molecular‐motor‐based LCN soft actuators are demonstrated to function as a grasping hand, where the continuous motions of grasping, moving, lifting, and releasing an object are successfully achieved. This work may provide inspiration to the preparation of next‐generation photoactive advanced functional materials toward their wide applications in the areas of photonics, optoelectronics, soft robotics, and beyond.  相似文献   

9.
Flexible actuators have important applications in artificial muscles, robotics, optical devices, and so on. However, most of the conventional actuators have only actuation function, lacking in real‐time sensing signal feedbacks. Here, to break the limitation and add functionality in conventional actuators, a graphene‐based actuator with integrated‐sensing function is reported, which avoids the dependence on image post‐processing for actuation detection and realizes real‐time measurement of the shape‐deformation amplitudes of the actuator. The actuator is able to show a large bending actuation (curvature of 1.1 cm?1) based on a dual‐mode actuation mechanism when it is driven by near infrared light. Meanwhile, the relative resistance change of the actuator is ?17.5%. The sensing function is attributed to piezoresistivity and thermoresistivity of the reduced graphene oxide and paper composite. This actuator can be used as a strain sensor to monitor human motions. A smart gripper based on the actuators demonstrates perfect integration of the actuating and sensing functions, which can not only grasp and release an object, but also sense every actuation state of the actuator. The developed integrated‐sensing actuator is hopeful to open new application fields in soft robotics, artificial muscles, flexible wearable devices, and other integrated‐multifunctional devices.  相似文献   

10.
Soft pneumatic actuators possess the increasing potential for various healthcare applications, such as smart wearable devices, safe human-robot interaction, and flexible manipulators. However, it is difficult to translate the existing technologies to commercial applications due to their inefficient volumetric power, sophisticated control with high operation pressure, slow production, and high cost. To overcome these issues, herein, a caterpillar-inspired actuator using hierarchical textile architectures based on simple fabrication and low-cost strategy is designed. Unlike the existing textile-based pneumatic actuators, the designed actuators are constructed by combining boucle fancy yarns with a novel trilayer-knit architecture. The as-prepared actuators concurrently possess fast response (1100° s−1), large bending actuation strain (1080° m−1), high-power density (272 W m−3), mechanical robustness, easy-programmable motions, and human-tactile comfort, which outperforms currently reported textile-based pneumatic actuators. Furthermore, due to the geometrical transition of the engineered hierarchical structure, the developed actuators exhibit superior dual-stiffness effect with stress evolution, providing a facile approach to addressing the conflict of flexibility and force output in soft fluidic actuators. This concept as a paradigm provides new insights to develop soft actuators with outstanding design flexibility, adaptability, and multifunctionality using engineered textile-structure, which has great potential for real-world applications in medical rehabilitation, physiotherapy, and soft robotics.  相似文献   

11.
Electrochemical devices that transform electrical energy to mechanical energy through an electrochemical process have numerous applications ranging from robotics and micropumps to microlenses and bioelectronics. To date, achievement of large deformation strains and fast responses remains challenging for electrochemical actuators wherein drag forces restrict the device motion and electrode materials/structures limit the ion transportation. Results for electrochemical actuators, electrochemical mass transfers, and electrochemical dynamics made from organic semiconductors (OSNTs) are reported. The OSNTs device exhibits high-performance with fast ion transport and accumulation in liquid and gel-polymer electrolytes. This device demonstrates an impressive performance, including low power consumption/strain, a large deformation, fast response, and excellent actuation stability. This outstanding performance stems from the enormous effective surface area of nanotubes that facilitates ion transport and accumulation resulting in high electroactivity and durability. Experimental studies of motion and mass transport are utilized along with the theoretical analysis for a variable–mass system to establish the dynamics of the device and to introduce a modified form of Euler-Bernoulli's equation for the OSNTs. Ultimately, a state-of-the-art miniaturized device composed of multiple microactuators for potential biomedical applications is demonstrated. This work provides new opportunities for next-generation actuators that can be utilized in artificial muscles and biomedical devices.  相似文献   

12.
Self‐healing materials are capable of spontaneously repairing themselves at damaging sites without additional adhesives. They are important functional materials with wide applications in actuators, shape memorizing materials, smart coatings, and medical treatments, etc. Herein, this study reports the self‐healing of graphene oxide (GO) functional architectures and devices with the assistance of moisture. These GO architectures can completely restore their mechanical‐performance (e.g., compressibility, flexibility, and strength) after healing their broken sites using a little amount of water moisture. On the basis of this effective moisture‐triggered self‐healing process, this study develops GO smart actuators (e.g., bendable actuator, biomimetic walker, rotatable fiber motor) and sensors with self‐healing ability. This work provides a new pathway for the development of self‐healing materials for their applications in multidimensional spaces and functional devices.  相似文献   

13.
Micrometer‐scale liquid crystal network (LCN) actuators have potential for application areas like biomedical systems, soft robotics, and microfluidics. To fully harness their power, a diversification in production methods is called for, targeting unconventional shapes and complex actuation modes. Crucial for controlling LCN actuation is the combination of macroscopic shape and molecular‐scale alignment in the ground state, the latter becoming particularly challenging when the desired shape is more complex than a flat sheet. Here, one‐step processing of an LCN precursor material in a glass capillary microfluidic set‐up to mold it into thin shells is used, which are stretched by osmosis to reach a diameter of a few hundred micrometers and thickness on the order of a micrometer, before they are UV crosslinked into an LCN. The shells exhibit radial alignment of the director field and the surface is porous, with pore size that is tunable via the osmosis time. The LCN shells actuate reversibly upon heating and cooling. The decrease in order parameter upon heating induces a reduction in thickness and expansion of surface area of the shells that triggers continuous buckling in multiple locations. Such buckling porous shells are interesting as soft cargo carriers with capacity for autonomous cargo release.  相似文献   

14.
Recently, actuating materials based on carbon nanotubes or graphene have been widely studied. However, present carbon‐based actuating materials are mostly driven by a single stimulus (humidity, light, electricity, etc.), respectively, which means that the application conditions are limited. Here, a new kind of multiresponsive actuating material which can be driven by humidity, light, and electricity is proposed, so it can be used in various conditions. The fabrication is based on the simplest pencil‐on‐paper method, in which the pencil and paper are both low‐cost and easily obtained daily materials. The actuation effect is more remarkable due to a dual‐mode actuation mechanism, which leads to an ultralarge actuation (bending curvature up to 2.6 cm?1). Elaborately designed, the actuator can further exhibit a bidirectional bending actuation, which is a significant improvement compared with previous reported thermal actuators. What is more, a colorful biomimetic flower and a smart curtain are also fabricated, fully utilizing the printable characteristic of the paper and multiresponsive characteristic of the actuator. It is assumed that the newly designed actuating material has great potential in the fields of lab‐on‐paper devices, artificial muscles, robotics, biomimics, and smart household materials.  相似文献   

15.
Hygromorph composites are moisture‐induced shape‐changing materials that are increasingly studied to develop autonomously actuated deployable structures. The morphing mechanism is based on the high affinity for moisture and the hygroexpansive nature of at least one component, combined with a bilayer microstructure. Among available hygromorphs, those consisting of cellulosic or hydrogel material‐based actuators trigger fast responses to moisture. Their stiffness however decreases significantly with the moisture content and that restricts their potential application as soft actuators. This work proposes a novel 4D printed multistimuli‐responsive structural material based on conductive carbon reinforcements and combined with a moisture sensitive polymer. These 4D printed materials possess a microstructure that provides the capability of natural actuators like pine cones. The actuation of these functional materials could be either triggered passively by the variation of the ambient moisture, or by electroheating, with the latter leading to the control of the moisture content in initially wet samples via Joule effects. This new class of functional materials shows an increase of the actuation speed by a factor 10 compared to other existing hygromorphs with the same responsiveness. When the electrical heating is turned off, passive cooling and moisture driven actuation is triggered in a full reversible mode.  相似文献   

16.
Remotely controlled actuation with wireless sensorial feed‐back is desirable for smart materials to obtain fully computer‐controlled actuators. A light‐controllable polymeric material is presented, in which exposure to light couples with a change in magnetic properties, allowing light signal conversion into non‐volatile magnetic memory. The same material can serve, additionally, both as actuator and transducer, and allows the monitoring of its two‐way elastic shape‐changes by magnetic read‐out. In order to tune the macroscopic magnetic properties of the material, both the reorientation of i) shape anisotropic ferrimagnetic nano‐spindles and ii) a mechanically and magnetically coupled liquid‐crystalline elastomer (LCE) matrix are controlled. These materials are envisioned to have great potential for the development of innovative functional objects, for example, computer‐controlled smart clothing, sensors, signal encoding, micro‐valves, and robotic devices.  相似文献   

17.
Electroactive polymer-based devices for e-textiles in biomedicine.   总被引:1,自引:0,他引:1  
This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.  相似文献   

18.
Additive manufacturing strives to combine any combination of materials into 3D functional structures and devices, ultimately opening up the possibility of 3D printed machines. It remains difficult to actuate such devices, thus limiting the scope of 3D printed machines to passive devices or necessitating the incorporation of external actuators that are manufactured differently. Here, 3D printed hybrid thermoplast/conducter bilayers are explored, which can be actuated by differential heating caused by externally controllable currents flowing through their conducting faces. The functionality of such actuators is uncovered and it is shown that they allow to 3D print, in one pass, simple flexible robotic structures that propel forward under step‐wise applied voltages. Moreover, exploiting the thermoplasticity of the nonconducting plastic parts at elevated temperatures, it is shown that how strong driving leads to irreversible deformations—a form of 4D printing—which also enlarges the range of linear response of the actuators. Finally, it is shown that how to leverage such thermoplastic relaxations to accumulate plastic deformations and obtain very large deformations by alternatively driving both layers of a bilayer; this is called ratcheting. The strategy is scalable and widely applicable, and opens up a new approach to reversible actuation and irreversible 4D printing of arbitrary structures and machines.  相似文献   

19.
Next generation electronic products, such as wearable electronics, flexible displays, and smart mobile phones, will require the use of unprecedented electroactive soft actuators for haptic and stimuli‐responsive devices and space‐saving bio‐mimetic actuation. Here, a bio‐inspired all‐organic soft actuator with a π–π stacked and 3D ionic networked membrane based on naphthalene‐tetracarboxylic dianhydride (Ntda) and sulfonated polyimide block copolymers (SPI) is presented, utilizing an ultra‐fast solution process. The π–π stacked and self‐assembled 3D ionic networked membrane with continuous and interconnected ion transport nanochannels is synthesized by introducing simple and strong atomic level regio‐specific interactions of hydrophilic and hydrophobic SPI co‐blocks with cations and anions in the ionic liquid. Furthermore, a facile and ultrafast all‐solution process involving solvent blending, dry casting, and solvent dropping is developed to produce electro‐active soft actuators with highly conductive polyethylenedioxythiophene (PEDOT):polystyrenesulfonate (PSS) electrodes. Ionic conductivity and ion exchange capacity of the π–π stacked Ntda‐SPI membrane can be increased up to 3.1 times and 3.4 times of conventional SPI, respectively, resulting in a 3.2 times larger bending actuation. The developed bio‐inspired soft actuator is a good candidate for satisfying the tight requirements of next generation soft electronic devices due to its key benefits such as low operating voltage and comparatively large strains, as well as quick response and facile processability.  相似文献   

20.
As a new 2D material, MXene (Ti3C2Tx) shows great potential as a smart multifunctional humidity-responsive actuator due to its high hydrophilicity and conductivity but suffers from ambient oxidation and mechanical brittleness. Inspired by the mussels, the authors overcome these weaknesses by designing and fabricating a nacre-like and lamellar-structured composite film that consists of polydopamine-modified MXene and bacterial cellulose nanofibers, which shows improved properties as a moisture-driven actuator. The actuator has high conductivity (2848 S cm–1), excellent tensile strength (406 MPa), and toughness (15.3 MJ m–3). Moreover, the actuator is highly sensitive to moisture with the advantages of fast response (1.6 s), large deformation (176°), and high actuation force output (6.5 N m–2). It is additionally demonstrated that the actuator works as the electrical switch, robotic arm, and motor in a moisture-driven manner. Overall, it is believed that this work improves the drawbacks of current MXene-based actuators, laying the groundwork for their wider applications as moisture-driven devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号