首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
采用射频磁控溅射法制备了HA(+ZrO2+Y2O3)/Ti6Al4V生物复合涂层.借助于XRD、SEM、FTIR和AFM等对溅射涂层的相组成、微观形貌和界面结合进行了研究,并以模拟体液试验探讨了涂层的生物活性.实验结果表明:磁控溅射的复合涂层呈非晶态,经过退火处理,可以使其转化为晶态;复合涂层的微观表面凹凸不平,并呈现网状结构和较多的孔隙,其孔隙直径约为0.5-2.0μm,孔隙面积占涂层表面积的30%-40%;HA(+ZrO2+Y2O3)/Ti6Al4V复合涂层的界面结合强度随(ZrO2+Y2O3)复合颗粒含量的增大和溅射功率的提高而增强,最高可达59.6MPa.复合涂层在模拟体液中浸泡一段时间后,表面覆盖一层新生物质—含有CO^2-3的类骨磷灰石,其晶粒非常小,它与自然骨中无机相的结构成分相似,表明复合涂层具有良好的生物活性.  相似文献   

2.
采用磁控溅射方法在钛合金(Ti6A14V)基体上制备了HA( YSZ)复合涂层.利用X射线衍射仪(XRD)分析涂层的物相组成,扫描电镜(SEM)观察涂层的表面形貌,原子力显微镜(AFM)分析涂层的生长状况,划痕法测定涂层与基体的附着力.结果表明,用磁控溅射法可在Ti6Al4V基体上制备HA( YSZ)复合涂层,涂层组成与靶材基本相似,涂层呈多孔状,划痕法测量涂层的附着力约为80N,涂层的生长模式为层状生长加岛状生长.  相似文献   

3.
射频磁控溅射含氟羟基磷灰石涂层的研究   总被引:1,自引:0,他引:1  
本文采用射频磁控溅射技术在钛合金(Ti6Al4V)基体上制备出含氟羟基磷灰石(FHA)生物涂层,探讨该涂层组织结构,不同氟含量和温度对涂层晶化程度的影响.利用扫描电镜(SEM)观察FHA生物涂层的表面形貌,采用X射线衍射仪(XRD)分析涂层相结构,利用能量分散谱仪(EDS)分析涂层的Ca/P比.结果表明,随着氟含量的增加可大大提高涂层的晶化程度,制备的FHA涂层致密、均匀.700℃晶化处理的涂层结晶度较高.  相似文献   

4.
采用高频感应加热熔化(90%钛(原子分数,下同)+10%硼)预置涂层的方法在Ti6Al4V基体表面制备感应熔覆原位TiB增强Ti基复合涂层,利用扫描电镜、能谱仪、X射线衍射仪、显微硬度计和纳米压痕仪等研究复合涂层的显微结构、物相构成及微纳米力学性能。结果表明:感应熔覆钛基复合涂层表面光滑平整,内部无裂纹和孔隙,与基体形成良好的冶金结合;熔覆过程中Ti与B充分反应生成TiB增强相,涂层基质相由α-Ti和少量β-Ti构成。原位TiB增强体在涂层内部分布均匀,体积分数约为9.4%,纳米压痕硬度和弹性模量高达35 GPa和545 GPa。复合涂层的显微硬度达到525HV_(0.2),较Ti6Al4V基体材料提高了约67%。  相似文献   

5.
采用磁控溅射方法在钛合金(Ti6A14V)基体上制备了HA(4-YSZ)复合涂层。利用X射线衍射仪(XRD)分析涂层的物相组成,扫描电镜(SEM)观察涂层的表面形貌,原子力显微镜(AFM)分析涂层的生长状况,划痕法测定涂层与基体的附着力。结果表明,用磁控溅射法可在Ti6A14V基体上制备HA(+YSZ)复合涂层,涂层组成与靶材基本相似,涂层呈多孔状,划痕法测量涂层的附着力约为80N,涂层的生长模式为层状生长加岛状生长。  相似文献   

6.
采用磁控溅射技术在Ti6Al4V钛合金表面制备了Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层;利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪 (XPS),分析了涂层的微观结构、物性组成和化学价态;通过划痕仪、纳米压痕仪、摩擦磨损试验机和电化学工作站,检测了涂层的结合强度、力学性能、摩擦系数和耐腐蚀性。研究结果表明,Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层表面由峰型颗粒组成,粒径大小均匀,涂层结构致密。与Ti6Al4V相比,Ta_2O_5/Ta_2O_5-Ti/Ti多层涂层试样具有较小的摩擦系数,较高的腐蚀电位和较小的腐蚀电流密度,表现出良好的耐磨和耐腐蚀性能,能对Ti6Al4V合金植入材料起到较好的保护作用。  相似文献   

7.
采用电泳沉积在Ti6A14V钛合金表面制备了以生物玻璃(BG)为中间层,BG与氟取代磷灰石(FHA)复合粉末为表层的BG/BG—FHA涂层。通过XRD、SEM、EDS和电子万能力学试验机对BG/BG—FHA复合涂层的物相结构、微观形貌和涂层结合力进行了分析,优化了涂层的热处理制度,并通过模拟体液浸泡实验研究了涂层的体外...  相似文献   

8.
采用射频磁控溅射技术在Ti6Al4V基体上成功制备了含氟羟基磷灰石梯度复合涂层(HAF/YSZ)。利用X射线光电子能谱(XPS)、电子探针(EDX)、扫描电镜(SEM)等对涂层的成分分布、形貌、界面结合进行表征。通过模拟体液(SBF)实验,分析和评价了HAF/YSZ涂层在模拟人体条件下的生物性能。结果表明,所制备涂层表面粗糙,呈多孔岛状结构,有利于新生骨组织的生长;涂层与基体结合紧密,各层间相互扩散,整体一致性较好;经模拟体液浸泡后,涂层表面有新生物质沉积,表现出较好的生物活性及稳定性;梯度复合涂层较氟含量单一的氟羟基磷灰石涂层具有更好的抗体液溶解能力及稳定性。  相似文献   

9.
利用连续波2kW Nd-YAG激光在Ti6Al4V合金表面原位制备TiN枝晶增强梯度金属基复合材料表面层,并研究了该表面层的显微组织和磨损性能。结果表明:该表面层沿激光熔化深度具有明显的梯度结构,表面层与Ti6Al4V基体之间呈现良好的冶金结合,Ti6Al4V的表面硬度及耐磨性得到了显著增强.  相似文献   

10.
系统阐述了在钛合金(Ti-6Al-4V)表面等离子喷涂羟基磷灰石(HA)涂层的研究进展.描述了等离子喷涂制备HA涂层的工艺过程、微观形貌和化学组成.综述几种综合性能较高的复合型涂层:HA/BG(生物活性玻璃)复合涂层,HA/ZrO2复合增强型涂层,HA/Ti涂层,HA/Ti-6Al-4V梯度涂层;并对HA涂层发展趋势进行了展望.  相似文献   

11.
梯度结构羟基磷灰石生物活性涂层的性能   总被引:5,自引:0,他引:5  
采用等离子喷涂系统在Ti6Al4V钛合金基体表面制备出真有梯度结构的羟基磷灰石生物活性梯度涂层,利用纳米硬度计等手段分析了生物活性涂层的梯度结构.结果表明:金属基体与陶瓷界面区域的弹性模量和硬度呈梯度变化;生物活性功能涂层的表面具有典型的多孔结构特征,整个涂层沿垂直基体方向从底层致密结构向表面层多孔结构过渡;涂层的成分从生物稳定性的底层至生物活性的表面层呈梯度变化,涂层表面成分为具有生物活性的羟基磷灰石.涂层的这种结构特征保持了涂层的生物活性,提高涂层与基体的结合强度(48.6MPa)。  相似文献   

12.
Laser surface alloying of Mo, WC and Mo–WC powders on the surface of Ti6Al4V alloys using a 2 kW Nd-YAG laser was performed. The dilution effect upon the microstructure, microhardness and wear resistance of the surface metal matrix composite (MMC) coating was investigated. With a constant thickness of pre-placed powder, the dilution levels of the alloyed layers were found to increase with the incident laser power. The fabricated surface MMC layer was metallurgically bonded to the Ti6Al4V substrate. The microhardness of the fabricated surface layer was found to be inversely proportional to the dilution level. The EDAX and XRD spectra results show that new intermetallic compounds and alloy phases were formed in the MMC layer. With the existence of Mo content in the pre-placed powder, the β-phase of Ti in the MMC coating can be retained at the quenching process. With increasing weight percentage content of WC particles in the Mo–WC pre-pasted powder, the microhardness and sliding wear resistance of the laser surface coating were increased by 87% and 150 times, respectively, as compared with the Ti6Al4V alloy. The surface friction of the laser-fabricated MMC coatings was also decreased as compared with the worn Ti6Al4V substrate.  相似文献   

13.
Thermal behavior of electrodeposited hydroxyapatite (HAP) coating on a titanium alloy (Ti6Al4V) is investigated in order to optimize the heat treatment conditions for this prosthetic material. The synthesized coatings are annealed in air atmosphere at 400, 600, 800, and 1000 °C, and then characterized by X‐ray diffraction (XRD) and selected area electron diffraction (SAED) for structure and phases analysis. Scanning and transmission electron microscopy associated to energy dispersive X‐ray microanalysis (SEM‐EDXS and STEM) are used for morphology and composition analysis. The results show that when the electrodeposited coating is annealed at temperatures greater than 600 °C, a well‐crystallized HAP is obtained with a notable change of its morphology. However, at these temperatures the surface of Ti6Al4V alloy (uncoated zones of the implant) is deteriorated by the formation of a thick surface oxide layer. Therefore, we limit the heat treatment temperature for the electrodeposited coatings on a Ti6Al4V alloy at 550 °C. At this optimized temperature it is demonstrated that the link between the coating and the substrate is improved and the crystallinity of the coating is controlled which make it well bioactive.  相似文献   

14.
A series of quaternary (Ti, Al, V) N coating layers were obtained by low temperature reactive plasma sputtering in differing deposition conditions to improve the wear resistance and the biocompatibility of a titanium surgical alloy, specifically Ti-6Al-4V. Characterization of the mechanical properties, structure and the chemical composition of the coating layer was explored by microhardness test, ball against flat wear test, scanning electron microscopy and X-ray diffraction. The biocompatibility of the optimum coating layer (as determined by mechanical performance) was examined by a modified MTT toxicity test and by monitoring cell growth assessed by quantitative stereological analysis. The experimental results are encouraging, indicating that this low temperature deposited, dense, quaternary (Ti, Al, V) N coating layer exhibits improved mechanical properties such as high hardness and excellent adhesion to a Ti alloy substrate and is highly biocompatible.  相似文献   

15.
Osteointegration of titanium or its alloy with bone can be greatly improved by calcium phosphate coatings, and further enhanced by an extracellular matrix protein layer such as collagen. In this study, an octacalcium phosphate (OCP)/collagen composite coating layer on Ti6Al4V substrate was prepared using electrolytic deposition method. A layer of OCP mineral consisting of flake-like crystals was first formed on the Ti6Al4V substrate. Subsequently, mineralized collagen fibrils were deposited on the former OCP layer. These collagen fibrils were interconnected and well adhered on the OCP layer so that they were immobilized. The microstructure of the composite coating varied with collagen concentration in the electrolyte. This study could offer a possibility of fabricating a desired surface matrix on orthopedic implants to enhance bone formation and fixation of implants.  相似文献   

16.
The effect of vacuum heat treatment on the interface microstructure and tribological property of Cu-coated Ti – 6Al – 4V alloy is investigated herein. After the vacuum heat treatment process, a diffusion layer is formed at the interface between the Cu coating and the Ti – 6Al – 4V substrate. The formed intermetallic compounds at the interface between the Ti – 6Al – 4V substrate and Cu coating are CuTi2, CuTi, Cu4Ti3, and β-Cu4Ti. The activation energy of intermetallic compound growth in the diffusion zone of Cu-coated Ti – 6Al – 4V is 126.0 kJ mol−1, and the pre-exponential factor is 0.1 m2 s−1. The tribological properties of the Cu-coated Ti – 6Al – 4V alloy are best when subjected to diffusion treatment at 700 °C for 300 min, with weight loss reduced by 58.2% compared to the Ti – 6Al – 4V alloy. The wear resistance of the Ti – 6Al – 4V alloy can be enhanced by Cu coating and vacuum diffusion heat treatment, and the formation of the Cu – Ti intermetallic compound contributes to this improvement. These findings offer new insights for further advancements in the tribological properties of titanium alloys.  相似文献   

17.
为提高钛合金表面的耐磨性能,采用等离子表面合金化技术在Ti6A14V(TC4)合金表面形成含Nb的梯度改性层,然后进行渗C复合处理,得到Nb-C复合改性层,研究了改性层的显微组织形貌、成分分布、相结构特征及硬度分布,并进行了球盘摩擦磨损实验.结果表明,Nb、C元素呈梯度分布,合金层主要由Ti、TiC、Nb2C、NbC等...  相似文献   

18.
Copper (Cu) could serve as antibacterial coating for Ti6Al4V implants. An additional cell-adhesive layer might compensate Cu cytotoxicity. This study aimed at in vitro and in vivo evaluation of low-temperature plasma treatment of Ti6Al4V plates with Ti/Cu magnetron sputtering (Ti6Al4V–Ti/Cu), plasma-polymerized ethylenediamine (Ti6Al4V–PPEDA), or both (Ti6Al4V–Ti/Cu–PPEDA). Ti6Al4V–Ti/Cu and Ti6Al4V–Ti/Cu–PPEDA had comparable in vitro Cu release and antibacterial effectiveness. Following intramuscular implantation of Ti6Al4V–Ti/Cu, Ti6Al4V–PPEDA, Ti6Al4V–Ti/Cu–PPEDA and Ti6Al4V controls for 7, 14 and 56 days with 8 rats/day, peri-implant tissue was immunohistochemically examined for different inflammatory cells. Ti6Al4V–PPEDA had more mast cells and NK cells than Ti6Al4V, and more tissue macrophages, T lymphocytes, mast cells and NK cells than Ti6Al4V–Ti/Cu–PPEDA. Ti6Al4V–Ti/Cu had more mast cells than Ti6Al4V and Ti6Al4V–Ti/Cu–PPEDA. Results indicate that PPEDA-mediated cell adhesion counteracted Cu cytotoxicity. Ti6Al4V–Ti/Cu–PPEDA differed from Ti6Al4V only for mast cells on day 56. Altogether, implants with both plasma treatments had antibacterial properties and did not increase inflammatory reactions.  相似文献   

19.
An asymmetric coating composed of gelatin and hydroxyapatite on Ti6Al4V alloy implant was prepared to control the release of water-insoluble drug ibuprofen and improve the surface properties of the implant. The asymmetric coating developed into a thin dense outer layer and a thick porous inner layer using a dip-coating method and a succedent phase-inversion process. The drug loading ranged from 10 to 30% (w/w), and depended on the immersion time and drug concentration in the quenching solution. The in vitro release from this system was always at an approximately zero-order rate and at least lasted for 30 days. The in vitro studies in SBF revealed that the coating could induce the formation of apatite, and was fully covered after 14 days soaking in SBF solution. This asymmetric coating had better bioactivity of inducing the formation of apatite in vitro, compared with pure gelatin coating and bare Ti6Al4V implant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号