首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are examining possible roles of native and non-native interactions in early events in protein folding by a systematic analysis of the structures of fragments of proteins whose folding pathways are well characterised. Seven fragments of the 110-residue protein barnase, corresponding to the progressive elongation from its N terminus, have been characterised by a battery of biophysical and spectroscopic methods. Barnase is a multi-modular protein that folds via an intermediate in which the C-terminal region of its major alpha-helix (alpha-helix1, residues Thr6-His18) is substantially formed as is also its anti-parallel beta-sheet, centred around a beta-hairpin (residues Ser92-Leu95). Fragments up to, and including, residues 1-95 (fragment B95), appeared to be mainly disordered, although a small amount of helical secondary structure in each was inferred from far-UV CD experiments, and fluorescence studies indicated some native-like tertiary interactions in B95. The largest fragment (residues 1-105, B105) is compactly folded. The secondary structure in alpha-helix1 in the seven fragments was found by NMR to increase with increasing chain length faster than the build-up of tertiary interactions, indicating that alpha-helix1 is being stabilised by non-native interactions. This behaviour contrasts with that in fragments of the 64-residue chymotrypsin inhibitor 2 (CI2), in which tertiary and secondary structures build up in parallel with increasing length. CI2 consists of a single module of structure that folds without a detectable intermediate. The largest fragment of barnase, B105, has interactions that resemble its folding intermediate, whereas one of the largest fragments of CI2 (residues 1-60) resembles the folding transition state. The folding pathways of both proteins are consistent with a scheme in which there are low levels of native-like secondary structure in the denatured state that become stabilised by long-range interactions as folding proceeds. Neither protein forms a stable fold when lacking the last ten residues at the C terminus. Since at least 20 amino acid residues are bound to the ribosome during protein biosynthesis, these small proteins do not fold until they have left the ribosome, and so the studies of the folding of such proteins in vitro may be relevant to their folding in vivo, especially as the molecular chaperone GroEL binds only weakly to denatured CI2 and does not discernibly alter the folding mechanism of barnase.  相似文献   

2.
Electron microscopy of the tetradecameric double-ring complex of GroEL reveals a four-layered structure, indicating that the 58 kDa subunits are composed of two major morphological domains. We have used immuno-electron microscopy to assign these domains to the corresponding segments of the GroEL sequence. Upon chemical modification of GroEL with N-ethylmaleimide, protease treatment in the presence of ATP or ADP generates GroEL fragments of 15 kDa (N15; residues 1-141) and 40 kDa (C40; residues 153-531). As visualized by scanning transmission electron microscopy, affinity-purified antibodies directed against C40 recognize the outer layers, whereas antibodies against N15 interact with the equatorial portions of the GroEL double-ring. Thus, the two major domains of the subunits in the chaperonin complex are arranged in the order C40-N15:N15-C40. The single-ring chaperonin co-factor GroES interacts with the C40 domain while the ATP-binding site of GroEL is probably close to the junction between N15 and C40.  相似文献   

3.
A periplasmic protein has been found to prevent aggregation of the acid-unfolded dimethyl sulfoxide reductase (DMSOR), the periplasmic terminal reductase of dimethyl sulfoxide respiration in the phototroph Rhodobacter sphaeroides f. sp. denitrificans, in a manner similar to that of the Escherichia coli chaperonin GroEL (Matsuzaki et al., Plant Cell Physiol. 37:333-339, 1996). The protein was isolated from the periplasm of the phototroph. It had a molecular mass of 58 kDa and had no subunits. The sequence of 14 amino-terminal residues of the protein was completely identical to that of the periplasmic dipeptide transport protein (DppA) of E. coli. The 58-kDa protein prevented aggregation to a degree comparable to that of GroEL on the basis of monomer protein. The 58-kDa protein also decreased aggregation of guanidine hydrochloride-denatured rhodanese, a mitochondrial matrix protein, during its refolding upon dilution. The 58-kDa protein is a kind of molecular chaperone and could be involved in maintaining unfolded DMSOR, after secretion of the latter into the periplasm, in a competent form for its correct folding.  相似文献   

4.
The conformational properties of the molecular chaperone GroEL in the presence of ATP, its non-hydrolyzable analog 5'-adenylimidodiphosphate (AMP-PNP), and ADP have been analyzed by differential scanning calorimetry (DSC), Fourier-transform infra-red (FT-IR) and fluorescence spectroscopy. Nucleotide binding to one ring promotes a decrease in the Tm value of the GroEL thermal transition that is reversed when both rings are filled with nucleotide, indicating that the sequential occupation of the two protein rings by these nucleotides has different effects on the GroEL thermal denaturation process. In addition, ATP induces a conformational change in GroEL characterized by (a) the appearance of a reversible low temperature endotherm in the DSC profiles of the protein, and (b) an enhanced binding of the hydrophobic probe 8-anilino-naphthalene-1-sulfonate (ANS), which strictly depends on ATP hydrolysis. The similar sensitivity to K+ of the temperature range where activation of the GroEL ATPase activity, the low temperature endotherm, and the increase of the ANS fluorescence are abserved strongly indicates the existence of a conformational state of GroEL during ATP hydrolysis, different from that generated on ADP or AMP-PNP binding. To achieve this intermediate conformation, GroEL mainly modifies its tertiary and quaternary structures, leading to an increased exposure of hydrophobic surfaces, with minor rearrangements of its secondary structure.  相似文献   

5.
It has been shown that vaccination with two low molecular mass excretory secretory (ES) antigens of 15 and 24 kDa, respectively, afforded a substantial degree of protection against Haemonchus contortus to sheep. In vitro cultivation of the parasite usually yields a limited amount of these proteins and therefore, recombinant DNA technology was employed to clone the cDNAs encoding the ES proteins of interest and to express them in a convenient vector system. The N-terminal amino acid sequences of the two ES products were determined. Specific 5' primers were used in combination with an oligo (dT) 3' primer to amplify the appropriate cDNAs by polymerase chain reaction (PCR). A lambda ZAPII cDNA library was constructed from mRNA of L5 larvae and subsequently screened with the PCR products. The full length clone of the 15 kDa ES protein coded for a 17.2 kDa precursor molecule of 148 amino acids with a signal peptide of 30 amino acids. The full length clone of the 24 kDa ES protein coded for a 24.6 kDa precursor protein of 222 amino acids with a leader sequence of 19 residues. The expression of both ES products appeared to be developmentally regulated; mRNA encoding occurs only in the parasitic life stages. A cDNA of each ES protein was sub-cloned, without the leader sequence, into a pQE9 expression vector. Both purified recombinant proteins were recognized by sera from H. contortus hyperimmunised sheep as judged by immunoblot analysis, suggesting that antigenic determinants were also present on the recombinant proteins.  相似文献   

6.
Dihydrofolate reductase (DHFR) from Escherichia coli does not interact with the molecular chaperonin GroEL regardless of whether the interaction is initiated from the native or the unfolded state. In contrast, murine DHFR shows a strong interaction with GroEL. Using the structure of human DHFR as a model for the murine protein, a superimposition of the two structures shows that there are three distinct external loops in the eukaryotic DHFR that are not present in the E. coli protein. Removal of one loop (residues 99-108) from the eukaryotic murine DHFR has no effect on the interaction with GroEL. On the basis of the differences in structures, we inserted either of two surface loops of murine DHFR into the corresponding regions of E. coli DHFR. In the first mutant (EcDHFR-i(9)36), residues 36 and 37 (L-N) of E. coli DHFR were replaced with the nine amino acid sequence T-T-S-S-V-E-G-K-Q. In the second mutant (EcDHFR-i(7)136), residues 136-139 (V-F-S-E) of E. coli DHFR were replaced with the seven amino acid sequence L-P-E-Y-P-G-V. Both E. coli DHFR mutants formed a complex with GroEL starting from either the native or the unfolded states of DHFR. The binding was specific since the presence of MgATP caused the release of the proteins from GroEL. As with murine DHFR, nonnative conformations of EcDHFR-i(9)36 and EcDHFR-i(7)136 are bound to GroEL. Fluorescence titration techniques were used to quantitate the interaction between GroEL and these proteins. A simple chromatographic procedure was developed to remove contaminating tryptophan containing peptides from GroEL samples. The mutant EcDHFR-i(7)136 binds to GroEL with a stoichiometry of 4-5 mol of DHFR per mol of GroEL tetradecamer, while murine DHFR binds to GroEL with a stoichiometry of 2 mol of DHFR per mol of GroEL tetradecamer. Both murine DHFR and EcDHFR-i(7)136 bind to GroEL very tightly, with equilibrium dissociation constants of less than 85 nM.  相似文献   

7.
Crystallographic and biochemical studies have indicated that the peptide-binding site of the molecular chaperone HSC70 is located in a small subdomain comprising a beta-sheet motif followed by a helical region, and there is some evidence of the involvement of this site in oligomerization of the protein. To determine the structure of this subdomain in solution and examine its involvement in oligomerization of HSC70, a 17-kDa protein (residues 385-540 of HSC70) consisting mainly of the peptide-binding site was constructed and analyzed for oligomerization properties. This small domain was found to bind peptides and to form oligomers in solution, probably tetramers, which dissociated into monomers on peptide binding in a manner comparable with that observed for the whole protein. Furthermore, in the 60-kDa fragment of HSC70, which is composed of the 17-kDa domain and the 44-kDa ATPase domain, not only were the oligomerization properties conserved, but dissociation of multimeric species into monomers on ATP binding also occurred and peptide stimulation of ATPase activity was restored. These results indicate that the isolated 17-kDa peptide-binding domain is necessary and sufficient for oligomerization of the whole protein, suggesting that the peptide-binding site may be involved in the oligomerization process.  相似文献   

8.
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.  相似文献   

9.
A glycoprotein, with apparent molecular weight in SDS-polyacrylamide gels of 37 kDa, has been isolated from the excretory-secretory (ES) products of the adult stage of Trichostrongylus colubriformis, a parasitic nematode. This protein is the major ES product recognized in immunoblots by lymph from a naturally infected sheep. A synthetic oligonucleotide, based on peptide sequence data from a digest of the purified protein was used to successfully screen a cDNA library. A cDNA clone was isolated which encoded a presumptive protein precursor of 220 amino acids that contained a 63 amino acid region of which more than 35% of the residues were proline, three peptide sequences determined from the natural component, and three potential N-glycosylation sites, consistent with the protein being isolated from the lectin-bound fraction of the adult ES products. The presumptive, processed, amino terminus encoded by the cDNA clone was preceded by a signal-like, hydrophobic-rich region of 16 amino acids.  相似文献   

10.
In this work we show that the GroEL (Hsp60 equivalent) chaperone protein can protected purified Escherichia coli RNA polymerase (RNAP) holoenzyme from heat inactivation better than the DnaK (Hsp70 equivalent) chaperone can. In this protection reaction, the GroES protein is not essential, but its presence reduces the amount of GroEL required. GroEL and GroES can also reactivate heat-inactivated RNAP in the presence of ATP. The mutant GroEL673 protein, with or without GroES, is incapable of reactivating heat-inactivated RNAP. GroEL673 can only protect RNAP, and this protecting ability is not stimulated by GroES. The mechanism by which the DnaJ and GrpE heat shock proteins contribute to DnaK's ability to reactivate heat-inactivated RNAP GroEL673 has also been investigated. We found that the DnaJ protein substantially reduces the levels of DnaK protein needed in this reactivation assay. However, the observed lag in reactivation is diminished only in the additional presence of the GrpE protein. Hence, DnaJ and GrpE are involved in both steps of this reactivation reaction (recognition of substrate and release of chaperone from the substrate-chaperone complex) while, in the case of the GroEL-dependent reaction, GroES is involved only during the release of chaperone from the substrate-chaperone complex.  相似文献   

11.
Genetic and biochemical work has highlighted the biological importance of the GroEL/GroES (Hsp60/Hsp10; cpn60/cpn10) chaperone machine in protein folding. GroEL's donut-shaped structure has attracted the attention of structural biologists because of its elegance as well as the secrets (substrates) it can hide. The recent determination of the GroES and GroEL/GroES structures provides a glimpse of their plasticity, revealing dramatic conformational changes that point to an elaborate mechanism, coupling ATP hydrolysis to substrate release by GroEL.  相似文献   

12.
13.
The Escherichia coli trigger factor is a peptidyl-prolyl cis/trans isomerase (PPIase) which catalyzes proline-limited protein folding extremely well. It has been found associated with nascent protein chains as well as with the chaperone GroEL. The trigger factor utilizes protein regions outside the central catalytic domain for catalyzing refolding of unfolded proteins efficiently. Here we produced several fragments which encompass individual domains or combinations of the middle FKBP-like domain (M) with the N-terminal (N) and C-terminal (C) regions, respectively. These fragments appear to be stably folded. They show ordered structure and cooperative urea-induced unfolding transitions, and the far-UV CD spectrum of the intact trigger factor is well represented by the sum of the spectra of the fragments. This suggests that the native trigger factor shows a modular structure, which is composed of three fairly independent folding units. In the intact protein there is a slight mutual stabilization of these units. The high enzymatic activity in protein folding could not be restored by fusing alternatively the N or the C-terminal regions to the catalytic domain (in NM and MC constructs, respectively). Surprisingly, the high folding activity of the intact trigger factor has been regained partially by functional complementation of the overlapping NM and MC constructs.  相似文献   

14.
The quantitative contribution of chaperonin GroEL to protein folding in E. coli was analyzed. A diverse set of newly synthesized polypeptides, predominantly between 10-55 kDa, interacts with GroEL, accounting for 10%-15% of all cytoplasmic protein under normal growth conditions, and for 30% or more upon exposure to heat stress. Most proteins leave GroEL rapidly within 10-30 s. We distinguish three classes of substrate proteins: (I) proteins with a chaperonin-independent folding pathway; (II) proteins, more than 50% of total, with an intermediate chaperonin dependence for which normally only a small fraction transits GroEL; and (III) a set of highly chaperonin-dependent proteins, many of which dissociate slowly from GroEL and probably require sequestration of aggregation-sensitive intermediates within the GroEL cavity for successful folding.  相似文献   

15.
An unresolved key issue in the mechanism of protein folding assisted by the molecular chaperone GroEL is the nature of the substrate protein bound to the chaperonin at different stages of its reaction cycle. Here we describe the conformational properties of human dihydrofolate reductase (DHFR) bound to GroEL at different stages of its ATP-driven folding reaction, determined by hydrogen exchange labeling and electrospray ionization mass spectrometry. Considerable protection involving about 20 hydrogens is observed in DHFR bound to GroEL in the absence of ATP. Analysis of the line width of peaks in the mass spectra, together with fluorescence quenching and ANS binding studies, suggest that the bound DHFR is partially folded, but contains stable structure in a small region of the polypeptide chain. DHFR rebound to GroEL 3 min after initiating its folding by the addition of MgATP was also examined by hydrogen exchange, fluorescence quenching, and ANS binding. The results indicate that the extent of protection of the substrate protein rebound to GroEL is indistinguishable from that of the initial bound state. Despite this, small differences in the quenching coefficient and ANS binding properties are observed in the rebound state. On the basis of these results, we suggest that GroEL-assisted folding of DHFR occurs by minor structural adjustments to the partially folded substrate protein during iterative cycling, rather than by complete unfolding of this protein substrate on the chaperonin surface.  相似文献   

16.
Trigger factor (TF) is a putative molecular chaperone recently found to function together with GroEL in the degradation of the fusion protein, CRAG. TF overproduction enhanced the ability of GroEL to form complexes with CRAG, as well as fetuin or histone. To define further this effect on GroEL binding, affinity columns containing a variety of denatured proteins were used. When cell extracts were applied onto a fetuin column, both TF and GroEL bound but not GroES. Upon ATP addition, TF and GroEL were eluted together and remained tightly associated (even in presence of GroES) in complexes containing one TF per GroEL 14-mer. Overproduction of TF enhanced the capacity of GroEL to bind to many denatured proteins. Moreover, GroEL-TF complexes isolated from such cells showed much greater binding capacity than GroEL from TF-deficient cells. Furthermore, the addition of pure TF to pure GroEL also enhanced markedly its binding capacity. The affinity of GroEL for CRAG also rises during heat shock due to GroEL phosphorylation. TF expression, however, did not promote GroEL phosphorylation. Moreover, heat shock and TF overproduction affected GroEL binding to other denatured polypeptides in distinct ways; only TF promoted binding to certain polypeptides, whereas only phosphorylation increased binding to others. Thus, association with TF and phosphorylation are independent regulators of GroEL function. This enhanced affinity of TF-GroEL complexes for unfolded proteins may also be important in protein folding, because TF has prolyl isomerase activity and associates with nascent polypeptides.  相似文献   

17.
18.
Interferon-gamma (IFN-gamma) is a structurally labile cytokine that rapidly denatures upon exposure to acid or heat. Here we show that both acid-denatured (pH 2) and thermally inactivated (50 degrees C) porcine IFN-gamma can be rescued with the Escherichia coli GroEL/ES chaperonin system and ATP, and reassembled into bioactive dimers. At 35 degrees C, spontaneous refolding of acid-denatured IFN-gamma was found to be dependent on the presence of guanidinium hydrochloride (0.15-0.25 M) or NaCl (0.1-0.2 M). Under non-permissive reaction conditions for regain of native structure (low-ionic-strength buffer at 35 degrees C), the yield of IFN-gamma refolded with GroEL/ES/ATP increased about 30-fold above the level of spontaneous refolding. In the absence of GroES, GroEL captured IFN-gamma in a folding-competent complex. Under these conditions, both ATP and alpha-casein induced release of IFN-gamma from GroEL but with the released protein tending to partition into sedimentable aggregates. Only in the presence of GroES, did ATP induce complete discharge of IFN-gamma from GroEL, with the released protein refolded into a conformation that is (a) immunoreactive/bio-active, (b) resistant to precipitation and (c) in a dimeric configuration. Chicken egg albumin and 90-kDa heat-shock protein were inactive in the exertion of any protective effect against physicochemical stress. The precise amount of protein refolded to the native state at different times of the folding reaction was determined by alpha-casein quenching and ELISA. The former is based on the conversion by excess alpha-casein of any population of unfolded IFN-gamma into one that escapes antibody recognition by subsequent ELISA. Since the native dimers, however, are not affected by alpha-casein quenching, immunoreactivity is directly proportional to the yield of correctly refolded protein. The validity of this approach was confirmed by measurement of biological activity. GroEL/ES-meditated reactivation amounted to > 80% both by ELISA and antiviral assay.  相似文献   

19.
Here we report a method of immobilising the chaperonins GroEL and GroES to a glass matrix. The immobilised chaperone system has been used to successfully refold target proteins denatured by guanidine hydrochloride and produce substantially higher levels of active protein than occur on dilution into aqueous solution alone. The chaperone system has been shown to refold proteins from each of the three categories of GroEL substrate. The refolding of the enzyme glycerol dehydrogenase from Bacillus stearothermophilus shows a two-fold increase in activity in the presence of immobilised GroEL compared to that in free solution. The lactate dehydrogenase from B. stearothermophilus also shows a two-fold higher yield of activity in the presence of the immobilised GroEL and ATP. The presence of immobilised GroEL in the absence of ATP arrests the refolding of LDH. The enzyme citrate synthetase from porcine heart demonstrates a three-fold increase in activity when refolded in the presence of immobilised GroEL, ATP and free GroES. Similar results are obtained in the presence of free GroEL, immobilised GroES and ATP. The matrix-bound chaperone can be removed from the refolding mixture by centrifugation, producing a reusable system that can be easily isolated and purified from the refolded substrate.  相似文献   

20.
BACKGROUND: The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. RESULTS: The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. CONCLUSIONS: The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes in protein structure as a result of calcium binding may facilitate phosphorylation. A small, but significant, movement of metal ions and sidechains could position catalytically important threonine residues for phosphorylation. The second calcium site represents a new calcium-binding motif that can play a role in the stabilization of protein structure. We discuss how the information about catalytic events in the active site could be transmitted to the peptide-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号